NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Enze Chen; Mark Asta – Journal of Chemical Education, 2022
With the growing desire to incorporate data science and informatics into STEM curricula, there is an opportunity to integrate research-based software and tools (e.g., Python) within existing pedagogical methods to craft new, accessible learning experiences. We show how the open-source Jupyter Book software can achieve this goal by creating a…
Descriptors: Programming, Open Source Technology, STEM Education, Textbooks
Peer reviewed Peer reviewed
Direct linkDirect link
Gianmarc Grazioli; Adam Ingwerson; David Santiago Jr.; Patrick Regan; Heekun Cho – Journal of Chemical Education, 2023
Computational chemistry instructional activities are often based around students running chemical simulations via a graphical user interface (GUI). GUI-based activities offer many advantages, as they enable students to run chemical simulations with a few mouse clicks. Although these activities are excellent for introducing students to the…
Descriptors: Computation, Chemistry, Teaching Methods, Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Weiss, Charles J. – Journal of Chemical Education, 2021
Scientific computing and computer literacy are increasingly important skills for chemistry students to learn, but despite this need, there is an absence of chemistry-specific texts available for teaching the subject. This article introduces a freely available textbook released under a Creative Commons license for use in an undergraduate scientific…
Descriptors: Science Instruction, Chemistry, College Science, Undergraduate Study
Peer reviewed Peer reviewed
Direct linkDirect link
Menke, Erik J. – Journal of Chemical Education, 2020
UC Merced's upper-division analytical chemistry course has been modified to include a series of Jupyter notebooks intended to introduce chemistry students to the Python computer language. These Jupyter notebooks were designed to cover a wide variety of topics common to quantitative and instrumental analysis. Assuming no prior programming…
Descriptors: Science Instruction, Chemistry, College Science, Undergraduate Study
Peer reviewed Peer reviewed
Direct linkDirect link
Tan, Song Wei Benjamin; Naraharisetti, Pavan Kumar; Chin, Siew Kian; Lee, Lai Yeng – Journal of Chemical Education, 2020
The advance of digital technology presents an opportunity to equip students with relevant skill sets as "Scientists of the Future" who are able to utilize knowledge at the interface between various disciplines. In this technology report, an open source programming language is used to automate a simple laboratory experiment commonly…
Descriptors: Programming Languages, Science Instruction, Chemistry, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Seshadri, Keshavan; Liu, Peng; Koes, David Ryan – Journal of Chemical Education, 2020
Classroom response systems are an important tool in many active learning pedagogies. They support real-time feedback on student learning and promote student engagement, even in large classrooms, by allowing instructors to solicit an answer to a question from all students and show the results. Existing classroom response systems are general purpose…
Descriptors: Chemistry, Science Instruction, Teaching Methods, Programming Languages
Peer reviewed Peer reviewed
Direct linkDirect link
Möglich, Andreas – Journal of Chemical Education, 2018
The quantitative evaluation of experimental data and their graphical presentation are integral to teaching and research in chemistry and the life sciences. Data are commonly fitted to physical models, which in all but the simplest cases are expressed as nonlinear mathematical functions. To facilitate data evaluation in both teaching and research…
Descriptors: Least Squares Statistics, Data, Chemistry, Science Instruction