Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 9 |
Descriptor
Source
Journal of Chemical Education | 11 |
Author
Publication Type
Journal Articles | 11 |
Reports - Descriptive | 9 |
Book/Product Reviews | 1 |
Computer Programs | 1 |
Reports - Evaluative | 1 |
Reports - Research | 1 |
Education Level
Higher Education | 5 |
Postsecondary Education | 2 |
Audience
Teachers | 2 |
Practitioners | 1 |
Location
Mississippi | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Shane V. Crowley – Journal of Chemical Education, 2023
This paper outlines the design of an interactive simulation of Stokes' law, which is used frequently in the study of particle sedimentation and flotation. The software application includes dynamic visualizations and statistical outputs. Descriptions of how the simulation can be used in a teaching context are provided. The application and its…
Descriptors: Interaction, Simulation, Computer Software, Teaching Methods
Josefina Ventre; Agustina L. Renna; Francisco J. Ibañez – Journal of Chemical Education, 2023
It is crucial nowadays to predict in a fast and simple manner physical-chemical behaviors like, the size-dependent optical properties of gold nanospheres (Au NSs). The idea behind this experiment is trying to replace (as much as possible) robust and expensive microscopy techniques with UV-vis spectrophotometry and friendly simulations. Students…
Descriptors: Chemistry, Prediction, Science Experiments, Spectroscopy
Brandon Thrope; Alan Rogerio Ferreira Lima; Alexandre Henrique Pinto – Journal of Chemical Education, 2022
Recently there is an increasing need for experiments that can be conducted remotely. In this sense, this paper presents three experiments about materials science and an X-ray diffraction (XRD) technique that can be taught and performed entirely remotely. The first experiment is about the calculation of lattice parameters, atomic radii, and…
Descriptors: Chemistry, Science Instruction, Pharmacology, Drug Therapy
Langbeheim, Elon – Journal of Chemical Education, 2020
Excluded-volume interactions are ubiquitous to modeling the average size of polymers in solution. This paper shows how simulations can be used by students to explore the emergence of mathematical scaling relations from excluded-volume interactions. Simulations provide robust visual representations of the system, and can be used to investigate a…
Descriptors: Simulation, Plastics, Teaching Methods, Learning Processes
Lozano-Parada, Jaime H.; Burnham, Helen; Martinez, Fiderman Machuca – Journal of Chemical Education, 2018
A classical nonlinear system, the "Brusselator", was used to illustrate the modeling and simulation of oscillating chemical systems using stability analysis techniques with modern software tools such as Comsol Multiphysics, Matlab, and Excel. A systematic approach is proposed in order to establish a regime of parametric conditions that…
Descriptors: Science Instruction, Chemistry, College Science, Educational Technology
Antuch, Manuel; Ramos, Yaquelin; Álvarez, Rubén – Journal of Chemical Education, 2014
SCILAB is a lesser-known program (than MATLAB) for numeric simulations and has the advantage of being free software. A challenging software-based activity to analyze the most common linear reversible inhibition types with SCILAB is described. Students establish typical values for the concentration of enzyme, substrate, and inhibitor to simulate…
Descriptors: Science Instruction, College Science, Undergraduate Study, Chemistry
George, Danielle J.; Hammer, Nathan I. – Journal of Chemical Education, 2015
This undergraduate physical chemistry laboratory exercise introduces students to the study of probability distributions both experimentally and using computer simulations. Students perform the classic coin toss experiment individually and then pool all of their data together to study the effect of experimental sample size on the binomial…
Descriptors: Science Instruction, College Science, Undergraduate Study, Science Laboratories
Chodroff, Leah; O'Neal, Tim M.; Long, David A.; Hemkin, Sheryl – Journal of Chemical Education, 2009
Chemists have used computational science methodologies for a number of decades and their utility continues to be unabated. For this reason we developed an advanced lab in computational chemistry in which students gain understanding of general strengths and weaknesses of computation-based chemistry by working through a specific research problem.…
Descriptors: Research Problems, Chemistry, Science Instruction, Computation
Castle, Karen J. – Journal of Chemical Education, 2007
In this undergraduate physical chemistry laboratory experiment, students acquire a high-resolution infrared absorption spectrum of carbon dioxide and use their data to show that the rotational-vibrational state populations follow a Boltzmann distribution. Data are acquired with a mid-infrared laser source and infrared detector. Appropriate…
Descriptors: Chemistry, Laboratory Experiments, Spectroscopy, Science Instruction

Newland, Robert J.; And Others – Journal of Chemical Education, 1988
Reviews four organic chemistry computer programs and three books. Software includes: (1) NMR Simulator 7--for IBM or Macintosh, (2) Nucleic Acid Structure and Synthesis--for IBM, (3) Molecular Design Editor--for Apple II, and (4) Synthetic Adventure--for Apple II and IBM. Book topics include physical chemistry, polymer pioneers, and the basics of…
Descriptors: Atomic Structure, Chemistry, College Science, Computer Software

Journal of Chemical Education, 1988
Describes a chemistry software program that emulates a modern binary gradient HPLC system with reversed phase column behavior. Allows for solvent selection, adjustment of gradient program, column selection, detectory selection, handling of computer sample data, and sample preparation. (MVL)
Descriptors: Chemical Analysis, Chemistry, Chromatography, College Science