Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 3 |
Descriptor
Computer Simulation | 3 |
Virtual Classrooms | 3 |
Chemistry | 2 |
Technology Integration | 2 |
Undergraduate Students | 2 |
Biochemistry | 1 |
COVID-19 | 1 |
Chemical Engineering | 1 |
Concept Formation | 1 |
Concept Teaching | 1 |
Courseware | 1 |
More ▼ |
Source
Journal of Chemical Education | 3 |
Author
Publication Type
Journal Articles | 3 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Reports - Research | 1 |
Education Level
Higher Education | 2 |
Postsecondary Education | 2 |
Audience
Location
United Kingdom | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Caño de las Heras, Simoneta; Kensington-Miller, Barbara; Young, Brent; Gonzalez, Vicente; Krühne, Ulrich; Mansouri, Seyed Soheil; Baroutian, Saeid – Journal of Chemical Education, 2021
Engineering education is facing major challenges as it seeks to provide necessary and robust practical experience for all its undergraduate students. The limitation of resources (capital and operational), the increasing number of engineering students and the need to provide safe, up-to-date laboratory experiences have become global issues.…
Descriptors: Virtual Classrooms, Computer Simulation, Technology Integration, Science Laboratories
Fernandes, Henrique S.; Cerqueira, Nuno M. F. S. A.; Sousa, Sergio F. – Journal of Chemical Education, 2021
Visualization can be a motivating way to teach students about molecules. Nowadays, the available experimental data and accurate computational results allow students to build realistic and accurate molecular models. These models include the representation of complex systems such as proteins, membranes, or nanotubes. However, the visualization of…
Descriptors: Computer Simulation, Virtual Classrooms, Internet, Handheld Devices
O'Malley, Patrick J.; Agger, Jonathan R.; Anderson, Michael W. – Journal of Chemical Education, 2015
An analysis is presented of the experience and lessons learned of running a MOOC in introductory physical chemistry. The course was unique in allowing students to conduct experimental measurements using a virtual laboratory constructed using video and simulations. A breakdown of the student background and motivation for taking the course is…
Descriptors: Chemistry, Teaching Methods, Virtual Classrooms, Open Education