NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jiangyue Liu; Siran Li – Journal of Educational Computing Research, 2024
Pair Programming is considered an effective approach to programming education, but the synchronous collaboration of two programmers involves complex coordination, making this method difficult to be widely adopted in educational settings. Artificial Intelligence (AI) code-generation tools have outstanding capabilities in program generation and…
Descriptors: Artificial Intelligence, Programming, Technology Uses in Education, Coding
Peer reviewed Peer reviewed
Direct linkDirect link
Lin Zhang; Qiang Jiang; Weiyan Xiong; Wei Zhao – Journal of Educational Computing Research, 2025
This study seeks to deepen the understanding of the direct and indirect effects of human-computer dialogic interaction programming activities, facilitated by ChatGPT, on student engagement. Data were collected from 109 Chinese high school students who engaged in programming tasks using either ChatGPT-driven dialogic interaction or traditional pair…
Descriptors: Artificial Intelligence, Computer Software, Computer Science Education, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Van Petegem, Charlotte; Deconinck, Louise; Mourisse, Dieter; Maertens, Rien; Strijbol, Niko; Dhoedt, Bart; De Wever, Bram; Dawyndt, Peter; Mesuere, Bart – Journal of Educational Computing Research, 2023
We present a privacy-friendly early-detection framework to identify students at risk of failing in introductory programming courses at university. The framework was validated for two different courses with annual editions taken by higher education students (N = 2 080) and was found to be highly accurate and robust against variation in course…
Descriptors: Pass Fail Grading, At Risk Students, Introductory Courses, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Knauf, Rainer; Sakurai, Yoshitaka; Tsuruta, Setsuo; Jantke, Klaus P. – Journal of Educational Computing Research, 2010
University education often suffers from a lack of an explicit and adaptable didactic design. Students complain about the insufficient adaptability to the learners' needs. Learning content and services need to reach their audience according to their different prerequisites, needs, and different learning styles and conditions. A way to overcome such…
Descriptors: Prerequisites, College Instruction, Educational Experiments, Cognitive Style