NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 18 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Paassen, Benjamin; McBroom, Jessica; Jeffries, Bryn; Koprinska, Irena; Yacef, Kalina – Journal of Educational Data Mining, 2021
Educational data mining involves the application of data mining techniques to student activity. However, in the context of computer programming, many data mining techniques can not be applied because they require vector-shaped input, whereas computer programs have the form of syntax trees. In this paper, we present ast2vec, a neural network that…
Descriptors: Data Analysis, Programming Languages, Networks, Novices
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pelaez, Kevin – Journal of Educational Data Mining, 2019
Higher education institutions often examine performance discrepancies of specific subgroups, such as students from underrepresented minority and first-generation backgrounds. An increase in educational technology and computational power has promoted research interest in using data mining tools to help identify groups of students who are…
Descriptors: At Risk Students, College Students, Identification, Multivariate Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Phan, Vinhthuy; Wright, Laura; Decent, Bridgette – Journal of Educational Data Mining, 2022
The allocation of merit-based awards and need-based aid is important to both universities and students who wish to attend the universities. Current approaches tend to consider only institution-centric objectives (e.g. enrollment, revenue) and neglect student-centric objectives in their formulations of the problem. There is lack of consideration to…
Descriptors: Student Financial Aid, Access to Education, Merit Scholarships, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Berens, Johannes; Schneider, Kerstin; Gortz, Simon; Oster, Simon; Burghoff, Julian – Journal of Educational Data Mining, 2019
To successfully reduce student attrition, it is imperative to understand what the underlying determinants of attrition are and which students are at risk of dropping out. We develop an early detection system (EDS) using administrative student data from a state and private university to predict student dropout as a basis for a targeted…
Descriptors: Risk Management, At Risk Students, Dropout Prevention, College Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Edwards, John; Hart, Kaden; Shrestha, Raj – Journal of Educational Data Mining, 2023
Analysis of programming process data has become popular in computing education research and educational data mining in the last decade. This type of data is quantitative, often of high temporal resolution, and it can be collected non-intrusively while the student is in a natural setting. Many levels of granularity can be obtained, such as…
Descriptors: Data Analysis, Computer Science Education, Learning Analytics, Research Methodology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Taub, Michelle; Azevedo, Roger – Journal of Educational Data Mining, 2018
Self-regulated learning conducted through metacognitive monitoring and scientific inquiry can be influenced by many factors, such as emotions and motivation, and are necessary skills needed to engage in efficient hypothesis testing during game-based learning. Although many studies have investigated metacognitive monitoring and scientific inquiry…
Descriptors: Metacognition, Undergraduate Students, Student Behavior, Scientific Research
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sonnenberg, Christoph; Bannert, Maria – Journal of Educational Data Mining, 2016
In computer-supported learning environments, the deployment of self-regulatory skills represents an essential prerequisite for successful learning. Metacognitive prompts are a promising type of instructional support to activate students' strategic learning activities. However, despite positive effects in previous studies, there are still a large…
Descriptors: Data Analysis, Metacognition, Prompting, Cues
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sweeney, Mack; Rangwala, Huzefa; Lester, Jaime; Johri, Aditya – Journal of Educational Data Mining, 2016
An enduring issue in higher education is student retention to successful graduation. National statistics indicate that most higher education institutions have four-year degree completion rates around 50%, or just half of their student populations. While there are prediction models which illuminate what factors assist with college student success,…
Descriptors: Systems Approach, Data Analysis, Prediction, Academic Achievement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Spoon, Kelly; Beemer, Joshua; Whitmer, John C.; Fan, Juanjuan; Frazee, James P.; Stronach, Jeanne; Bohonak, Andrew J.; Levine, Richard A. – Journal of Educational Data Mining, 2016
Random forests are presented as an analytics foundation for educational data mining tasks. The focus is on course- and program-level analytics including evaluating pedagogical approaches and interventions and identifying and characterizing at-risk students. As part of this development, the concept of individualized treatment effects (ITE) is…
Descriptors: Data Analysis, Individualized Instruction, Teaching Methods, Intervention
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zimmermann, Judith; Brodersen, Kay H.; Heinimann, Hans R.; Buhmann, Joachim M. – Journal of Educational Data Mining, 2015
The graduate admissions process is crucial for controlling the quality of higher education, yet, rules-of-thumb and domain-specific experiences often dominate evidence-based approaches. The goal of the present study is to dissect the predictive power of undergraduate performance indicators and their aggregates. We analyze 81 variables in 171…
Descriptors: Undergraduate Students, Graduate Students, Academic Achievement, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Miller, L. Dee; Soh, Leen-Kiat; Samal, Ashok; Kupzyk, Kevin; Nugent, Gwen – Journal of Educational Data Mining, 2015
Learning objects (LOs) are important online resources for both learners and instructors and usage for LOs is growing. Automatic LO tracking collects large amounts of metadata about individual students as well as data aggregated across courses, learning objects, and other demographic characteristics (e.g. gender). The challenge becomes identifying…
Descriptors: Comparative Analysis, Data Analysis, Hierarchical Linear Modeling, Electronic Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Saarela, Mirka; Karkkainen, Tommi – Journal of Educational Data Mining, 2015
Curricula for Computer Science (CS) degrees are characterized by the strong occupational orientation of the discipline. In the BSc degree structure, with clearly separate CS core studies, the learning skills for these and other required courses may vary a lot, which is shown in students' overall performance. To analyze this situation, we apply…
Descriptors: Data Analysis, Academic Achievement, Undergraduate Students, Core Curriculum
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Azarnoush, Bahareh; Bekki, Jennifer M.; Runger, George C.; Bernstein, Bianca L.; Atkinson, Robert K. – Journal of Educational Data Mining, 2013
Effectively grouping learners in an online environment is a highly useful task. However, datasets used in this task often have large numbers of attributes of disparate types and different scales, which traditional clustering approaches cannot handle effectively. Here, a unique dissimilarity measure based on the random forest, which handles the…
Descriptors: Online Courses, Females, Doctoral Programs, Graduate Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Waters, Andrew; Studer, Christoph; Baraniuk, Richard – Journal of Educational Data Mining, 2014
Identifying collaboration between learners in a course is an important challenge in education for two reasons: First, depending on the courses rules, collaboration can be considered a form of cheating. Second, it helps one to more accurately evaluate each learners competence. While such collaboration identification is already challenging in…
Descriptors: Cooperation, Large Group Instruction, Online Courses, Probability
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ezen-Can, Aysu; Boyer, Kristy Elizabeth – Journal of Educational Data Mining, 2015
Within the landscape of educational data, textual natural language is an increasingly vast source of learning-centered interactions. In natural language dialogue, student contributions hold important information about knowledge and goals. Automatically modeling the dialogue act of these student utterances is crucial for scaling natural language…
Descriptors: Classification, Dialogs (Language), Computational Linguistics, Information Retrieval
Previous Page | Next Page ยป
Pages: 1  |  2