Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 7 |
Descriptor
Bayesian Statistics | 7 |
Data Analysis | 7 |
Models | 5 |
Classification | 3 |
Comparative Analysis | 3 |
Intelligent Tutoring Systems | 3 |
Prediction | 3 |
Academic Achievement | 2 |
Accuracy | 2 |
Computer Games | 2 |
Data Processing | 2 |
More ▼ |
Source
Journal of Educational Data… | 7 |
Author
Baraniuk, Richard | 1 |
Behrens, John T. | 1 |
Benson, Martin | 1 |
Brandon Zhang | 1 |
Calico, Tiago | 1 |
Chen, Fu | 1 |
Chu, Man-Wai | 1 |
Crawford, Aaron V. | 1 |
Cui, Yang | 1 |
Dicerbo, Kristen E. | 1 |
Fay, Derek | 1 |
More ▼ |
Publication Type
Journal Articles | 7 |
Reports - Research | 7 |
Tests/Questionnaires | 1 |
Education Level
Elementary Education | 2 |
Middle Schools | 2 |
Grade 5 | 1 |
Grade 8 | 1 |
Higher Education | 1 |
Intermediate Grades | 1 |
Junior High Schools | 1 |
Postsecondary Education | 1 |
Secondary Education | 1 |
Audience
Location
North Carolina | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Shi Pu; Yu Yan; Brandon Zhang – Journal of Educational Data Mining, 2024
We propose a novel model, Wide & Deep Item Response Theory (Wide & Deep IRT), to predict the correctness of students' responses to questions using historical clickstream data. This model combines the strengths of conventional Item Response Theory (IRT) models and Wide & Deep Learning for Recommender Systems. By leveraging clickstream…
Descriptors: Prediction, Success, Data Analysis, Learning Analytics
Gervet, Theophile; Koedinger, Ken; Schneider, Jeff; Mitchell, Tom – Journal of Educational Data Mining, 2020
Intelligent tutoring systems (ITSs) teach skills using learning-by-doing principles and provide learners with individualized feedback and materials adapted to their level of understanding. Given a learner's history of past interactions with an ITS, a learner performance model estimates the current state of a learner's knowledge and predicts her…
Descriptors: Learning Processes, Intelligent Tutoring Systems, Feedback (Response), Knowledge Level
Cui, Yang; Chu, Man-Wai; Chen, Fu – Journal of Educational Data Mining, 2019
Digital game-based assessments generate student process data that is much more difficult to analyze than traditional assessments. The formative nature of game-based assessments permits students, through applying and practicing the targeted knowledge and skills during gameplay, to gain experiences, receive immediate feedback, and as a result,…
Descriptors: Educational Games, Student Evaluation, Data Analysis, Bayesian Statistics
Galyardt, April; Goldin, Ilya – Journal of Educational Data Mining, 2015
In educational technology and learning sciences, there are multiple uses for a predictive model of whether a student will perform a task correctly or not. For example, an intelligent tutoring system may use such a model to estimate whether or not a student has mastered a skill. We analyze the significance of data recency in making such…
Descriptors: Achievement Rating, Performance Based Assessment, Bayesian Statistics, Data Analysis
Waters, Andrew; Studer, Christoph; Baraniuk, Richard – Journal of Educational Data Mining, 2014
Identifying collaboration between learners in a course is an important challenge in education for two reasons: First, depending on the courses rules, collaboration can be considered a form of cheating. Second, it helps one to more accurately evaluate each learners competence. While such collaboration identification is already challenging in…
Descriptors: Cooperation, Large Group Instruction, Online Courses, Probability
Sabourin, Jennifer L.; Rowe, Jonathan P.; Mott, Bradford W.; Lester, James C. – Journal of Educational Data Mining, 2013
Over the past decade, there has been growing interest in real-time assessment of student engagement and motivation during interactions with educational software. Detecting symptoms of disengagement, such as off-task behavior, has shown considerable promise for understanding students' motivational characteristics during learning. In this paper, we…
Descriptors: Student Behavior, Classification, Learner Engagement, Data Analysis
Rupp, Andre A.; Levy, Roy; Dicerbo, Kristen E.; Sweet, Shauna J.; Crawford, Aaron V.; Calico, Tiago; Benson, Martin; Fay, Derek; Kunze, Katie L.; Mislevy, Robert J.; Behrens, John T. – Journal of Educational Data Mining, 2012
In this paper we describe the development and refinement of "evidence rules" and "measurement models" within the "evidence model" of the "evidence-centered design" (ECD) framework in the context of the "Packet Tracer" digital learning environment of the "Cisco Networking Academy." Using…
Descriptors: Computer Networks, Evidence Based Practice, Design, Instructional Design