Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 3 |
Descriptor
Data Analysis | 3 |
Hypothesis Testing | 3 |
Models | 2 |
Accuracy | 1 |
Bayesian Statistics | 1 |
Comparative Analysis | 1 |
Competition | 1 |
Computer Games | 1 |
Computer Software | 1 |
Cooperation | 1 |
Cooperative Learning | 1 |
More ▼ |
Source
Journal of Educational Data… | 3 |
Author
Azevedo, Roger | 1 |
Baraniuk, Richard | 1 |
Bosch, Nigel | 1 |
Studer, Christoph | 1 |
Taub, Michelle | 1 |
Waters, Andrew | 1 |
Publication Type
Journal Articles | 3 |
Reports - Research | 3 |
Education Level
Higher Education | 2 |
Postsecondary Education | 2 |
Elementary Education | 1 |
Grade 4 | 1 |
Grade 8 | 1 |
Intermediate Grades | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
National Assessment of… | 1 |
What Works Clearinghouse Rating
Bosch, Nigel – Journal of Educational Data Mining, 2021
Automatic machine learning (AutoML) methods automate the time-consuming, feature-engineering process so that researchers produce accurate student models more quickly and easily. In this paper, we compare two AutoML feature engineering methods in the context of the National Assessment of Educational Progress (NAEP) data mining competition. The…
Descriptors: Accuracy, Learning Analytics, Models, National Competency Tests
Taub, Michelle; Azevedo, Roger – Journal of Educational Data Mining, 2018
Self-regulated learning conducted through metacognitive monitoring and scientific inquiry can be influenced by many factors, such as emotions and motivation, and are necessary skills needed to engage in efficient hypothesis testing during game-based learning. Although many studies have investigated metacognitive monitoring and scientific inquiry…
Descriptors: Metacognition, Undergraduate Students, Student Behavior, Scientific Research
Waters, Andrew; Studer, Christoph; Baraniuk, Richard – Journal of Educational Data Mining, 2014
Identifying collaboration between learners in a course is an important challenge in education for two reasons: First, depending on the courses rules, collaboration can be considered a form of cheating. Second, it helps one to more accurately evaluate each learners competence. While such collaboration identification is already challenging in…
Descriptors: Cooperation, Large Group Instruction, Online Courses, Probability