Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 3 |
Descriptor
Source
Journal of Educational Data… | 3 |
Author
Beemer, Joshua | 1 |
Bohonak, Andrew J. | 1 |
Fan, Juanjuan | 1 |
Frazee, James P. | 1 |
Levine, Richard A. | 1 |
Lyons, Leilah | 1 |
Mallavarapu, Aditi | 1 |
Minor, Emily | 1 |
Pelaez, Kevin | 1 |
Shelley, Tia | 1 |
Slattery, Brian | 1 |
More ▼ |
Publication Type
Journal Articles | 3 |
Reports - Research | 3 |
Education Level
Higher Education | 3 |
Postsecondary Education | 3 |
High Schools | 1 |
Secondary Education | 1 |
Audience
Location
California (San Diego) | 2 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Pelaez, Kevin – Journal of Educational Data Mining, 2019
Higher education institutions often examine performance discrepancies of specific subgroups, such as students from underrepresented minority and first-generation backgrounds. An increase in educational technology and computational power has promoted research interest in using data mining tools to help identify groups of students who are…
Descriptors: At Risk Students, College Students, Identification, Multivariate Analysis
Spoon, Kelly; Beemer, Joshua; Whitmer, John C.; Fan, Juanjuan; Frazee, James P.; Stronach, Jeanne; Bohonak, Andrew J.; Levine, Richard A. – Journal of Educational Data Mining, 2016
Random forests are presented as an analytics foundation for educational data mining tasks. The focus is on course- and program-level analytics including evaluating pedagogical approaches and interventions and identifying and characterizing at-risk students. As part of this development, the concept of individualized treatment effects (ITE) is…
Descriptors: Data Analysis, Individualized Instruction, Teaching Methods, Intervention
Mallavarapu, Aditi; Lyons, Leilah; Shelley, Tia; Minor, Emily; Slattery, Brian; Zellner, Moria – Journal of Educational Data Mining, 2015
Interactive learning environments can provide learners with opportunities to explore rich, real-world problem spaces, but the nature of these problem spaces can make assessing learner progress difficult. Such assessment can be useful for providing formative and summative feedback to the learners, to educators, and to the designers of the…
Descriptors: Spatial Ability, Urban Areas, Neighborhoods, Conservation (Environment)