NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 2 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pelaez, Kevin – Journal of Educational Data Mining, 2019
Higher education institutions often examine performance discrepancies of specific subgroups, such as students from underrepresented minority and first-generation backgrounds. An increase in educational technology and computational power has promoted research interest in using data mining tools to help identify groups of students who are…
Descriptors: At Risk Students, College Students, Identification, Multivariate Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Spoon, Kelly; Beemer, Joshua; Whitmer, John C.; Fan, Juanjuan; Frazee, James P.; Stronach, Jeanne; Bohonak, Andrew J.; Levine, Richard A. – Journal of Educational Data Mining, 2016
Random forests are presented as an analytics foundation for educational data mining tasks. The focus is on course- and program-level analytics including evaluating pedagogical approaches and interventions and identifying and characterizing at-risk students. As part of this development, the concept of individualized treatment effects (ITE) is…
Descriptors: Data Analysis, Individualized Instruction, Teaching Methods, Intervention