NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi Pu; Yu Yan; Brandon Zhang – Journal of Educational Data Mining, 2024
We propose a novel model, Wide & Deep Item Response Theory (Wide & Deep IRT), to predict the correctness of students' responses to questions using historical clickstream data. This model combines the strengths of conventional Item Response Theory (IRT) models and Wide & Deep Learning for Recommender Systems. By leveraging clickstream…
Descriptors: Prediction, Success, Data Analysis, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zehner, Fabian; Eichmann, Beate; Deribo, Tobias; Harrison, Scott; Bengs, Daniel; Andersen, Nico; Hahnel, Carolin – Journal of Educational Data Mining, 2021
The NAEP EDM Competition required participants to predict efficient test-taking behavior based on log data. This paper describes our top-down approach for engineering features by means of psychometric modeling, aiming at machine learning for the predictive classification task. For feature engineering, we employed, among others, the Log-Normal…
Descriptors: National Competency Tests, Engineering Education, Data Collection, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mislevy, Robert J.; Behrens, John T.; Dicerbo, Kristen E.; Levy, Roy – Journal of Educational Data Mining, 2012
"Evidence-centered design" (ECD) is a comprehensive framework for describing the conceptual, computational and inferential elements of educational assessment. It emphasizes the importance of articulating inferences one wants to make and the evidence needed to support those inferences. At first blush, ECD and "educational data…
Descriptors: Educational Assessment, Psychometrics, Evidence, Computer Games