Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 4 |
Descriptor
Source
Journal of Educational Data… | 4 |
Author
Publication Type
Journal Articles | 4 |
Reports - Research | 3 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 2 |
Postsecondary Education | 2 |
Audience
Location
Arizona | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Narjes Rohani; Behnam Rohani; Areti Manataki – Journal of Educational Data Mining, 2024
The prediction of student performance and the analysis of students' learning behaviour play an important role in enhancing online courses. By analysing a massive amount of clickstream data that captures student behaviour, educators can gain valuable insights into the factors that influence students' academic outcomes and identify areas of…
Descriptors: Mathematics Education, Models, Prediction, Knowledge Level
Sanguino, Juan Camilo; Manrique, Rubén; Mariño, Olga; Linares-Vásquez, Mario; Cardozo, Nicolás – Journal of Educational Data Mining, 2022
Recommender systems in educational contexts have proven to be effective in identifying learning resources that fit the interests and needs of learners. Their usage has been of special interest in online self-learning scenarios to increase student retention and improve the learning experience. In this article, we present the design of a hybrid…
Descriptors: Information Systems, Educational Resources, Independent Study, Online Courses
Azarnoush, Bahareh; Bekki, Jennifer M.; Runger, George C.; Bernstein, Bianca L.; Atkinson, Robert K. – Journal of Educational Data Mining, 2013
Effectively grouping learners in an online environment is a highly useful task. However, datasets used in this task often have large numbers of attributes of disparate types and different scales, which traditional clustering approaches cannot handle effectively. Here, a unique dissimilarity measure based on the random forest, which handles the…
Descriptors: Online Courses, Females, Doctoral Programs, Graduate Students
Waters, Andrew; Studer, Christoph; Baraniuk, Richard – Journal of Educational Data Mining, 2014
Identifying collaboration between learners in a course is an important challenge in education for two reasons: First, depending on the courses rules, collaboration can be considered a form of cheating. Second, it helps one to more accurately evaluate each learners competence. While such collaboration identification is already challenging in…
Descriptors: Cooperation, Large Group Instruction, Online Courses, Probability