NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chen, Fu; Cui, Ying – Journal of Educational Data Mining, 2020
Effective learning outcome modeling is crucial to the success of learning evaluation in education. In the digital age, the movement towards online learning and computerized assessments has resulted in an explosion of structured and unstructured educational data (e.g., learners' problem-solving process data), which offers new opportunities for…
Descriptors: Models, Outcomes of Education, Data Analysis, Psychometrics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shen, Shitian; Mostafavi, Behrooz; Barnes, Tiffany; Chi, Min – Journal of Educational Data Mining, 2018
An important goal in the design and development of Intelligent Tutoring Systems (ITSs) is to have a system that adaptively reacts to students' behavior in the short term and effectively improves their learning performance in the long term. Inducing effective pedagogical strategies that accomplish this goal is an essential challenge. To address…
Descriptors: Teaching Methods, Markov Processes, Decision Making, Rewards
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Spoon, Kelly; Beemer, Joshua; Whitmer, John C.; Fan, Juanjuan; Frazee, James P.; Stronach, Jeanne; Bohonak, Andrew J.; Levine, Richard A. – Journal of Educational Data Mining, 2016
Random forests are presented as an analytics foundation for educational data mining tasks. The focus is on course- and program-level analytics including evaluating pedagogical approaches and interventions and identifying and characterizing at-risk students. As part of this development, the concept of individualized treatment effects (ITE) is…
Descriptors: Data Analysis, Individualized Instruction, Teaching Methods, Intervention
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kerr, Deirdre – Journal of Educational Data Mining, 2015
This study uses information about in-game strategy use, identified through cluster analysis of actions in an educational video game, to make data-driven modifications to the game in order to reduce construct-irrelevant behavior. The examination of student strategies identified through cluster analysis indicated that (a) it was common for students…
Descriptors: Information Retrieval, Data Analysis, Video Games, Educational Games
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Liu, Ran; Koedinger, Kenneth R. – Journal of Educational Data Mining, 2017
As the use of educational technology becomes more ubiquitous, an enormous amount of learning process data is being produced. Educational data mining seeks to analyze and model these data, with the ultimate goal of improving learning outcomes. The most firmly grounded and rigorous evaluation of an educational data mining discovery is whether it…
Descriptors: Educational Technology, Technology Uses in Education, Data Collection, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Werner, Linda; McDowell, Charlie; Denner, Jill – Journal of Educational Data Mining, 2013
Educational data mining can miss or misidentify key findings about student learning without a transparent process of analyzing the data. This paper describes the first steps in the process of using low-level logging data to understand how middle school students used Alice, an initial programming environment. We describe the steps that were…
Descriptors: Electronic Learning, Learning Processes, Educational Research, Data Collection