NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Harold Doran; Testsuhiro Yamada; Ted Diaz; Emre Gonulates; Vanessa Culver – Journal of Educational Measurement, 2025
Computer adaptive testing (CAT) is an increasingly common mode of test administration offering improved test security, better measurement precision, and the potential for shorter testing experiences. This article presents a new item selection algorithm based on a generalized objective function to support multiple types of testing conditions and…
Descriptors: Computer Assisted Testing, Adaptive Testing, Test Items, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Ersen, Rabia Karatoprak; Lee, Won-Chan – Journal of Educational Measurement, 2023
The purpose of this study was to compare calibration and linking methods for placing pretest item parameter estimates on the item pool scale in a 1-3 computerized multistage adaptive testing design in terms of item parameter recovery. Two models were used: embedded-section, in which pretest items were administered within a separate module, and…
Descriptors: Pretesting, Test Items, Computer Assisted Testing, Adaptive Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan, Lu; Huang, Yingshi; Li, Shuhang; Chen, Ping – Journal of Educational Measurement, 2023
Online calibration is a key technology for item calibration in computerized adaptive testing (CAT) and has been widely used in various forms of CAT, including unidimensional CAT, multidimensional CAT (MCAT), CAT with polytomously scored items, and cognitive diagnostic CAT. However, as multidimensional and polytomous assessment data become more…
Descriptors: Computer Assisted Testing, Adaptive Testing, Computation, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Chen, Chia-Wen; Wang, Wen-Chung; Chiu, Ming Ming; Ro, Sage – Journal of Educational Measurement, 2020
The use of computerized adaptive testing algorithms for ranking items (e.g., college preferences, career choices) involves two major challenges: unacceptably high computation times (selecting from a large item pool with many dimensions) and biased results (enhanced preferences or intensified examinee responses because of repeated statements across…
Descriptors: Computer Assisted Testing, Adaptive Testing, Test Items, Selection
Peer reviewed Peer reviewed
Direct linkDirect link
Chun Wang; Ping Chen; Shengyu Jiang – Journal of Educational Measurement, 2020
Many large-scale educational surveys have moved from linear form design to multistage testing (MST) design. One advantage of MST is that it can provide more accurate latent trait [theta] estimates using fewer items than required by linear tests. However, MST generates incomplete response data by design; hence, questions remain as to how to…
Descriptors: Test Construction, Test Items, Adaptive Testing, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Sooyeon; Moses, Tim; Yoo, Hanwook – Journal of Educational Measurement, 2015
This inquiry is an investigation of item response theory (IRT) proficiency estimators' accuracy under multistage testing (MST). We chose a two-stage MST design that includes four modules (one at Stage 1, three at Stage 2) and three difficulty paths (low, middle, high). We assembled various two-stage MST panels (i.e., forms) by manipulating two…
Descriptors: Comparative Analysis, Item Response Theory, Computation, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Pohl, Steffi – Journal of Educational Measurement, 2013
This article introduces longitudinal multistage testing (lMST), a special form of multistage testing (MST), as a method for adaptive testing in longitudinal large-scale studies. In lMST designs, test forms of different difficulty levels are used, whereas the values on a pretest determine the routing to these test forms. Since lMST allows for…
Descriptors: Adaptive Testing, Longitudinal Studies, Difficulty Level, Comparative Analysis