NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Kuan-Yu Jin; Wai-Lok Siu – Journal of Educational Measurement, 2025
Educational tests often have a cluster of items linked by a common stimulus ("testlet"). In such a design, the dependencies caused between items are called "testlet effects." In particular, the directional testlet effect (DTE) refers to a recursive influence whereby responses to earlier items can positively or negatively affect…
Descriptors: Models, Test Items, Educational Assessment, Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Xue; Tao, Jian; Wang, Chun; Shi, Ning-Zhong – Journal of Educational Measurement, 2019
Model selection is important in any statistical analysis, and the primary goal is to find the preferred (or most parsimonious) model, based on certain criteria, from a set of candidate models given data. Several recent publications have employed the deviance information criterion (DIC) to do model selection among different forms of multilevel item…
Descriptors: Bayesian Statistics, Item Response Theory, Measurement, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Debeer, Dries; Janssen, Rianne; De Boeck, Paul – Journal of Educational Measurement, 2017
When dealing with missing responses, two types of omissions can be discerned: items can be skipped or not reached by the test taker. When the occurrence of these omissions is related to the proficiency process the missingness is nonignorable. The purpose of this article is to present a tree-based IRT framework for modeling responses and omissions…
Descriptors: Item Response Theory, Test Items, Responses, Testing Problems
Peer reviewed Peer reviewed
Direct linkDirect link
Jin, Kuan-Yu; Wang, Wen-Chung – Journal of Educational Measurement, 2014
Sometimes, test-takers may not be able to attempt all items to the best of their ability (with full effort) due to personal factors (e.g., low motivation) or testing conditions (e.g., time limit), resulting in poor performances on certain items, especially those located toward the end of a test. Standard item response theory (IRT) models fail to…
Descriptors: Student Evaluation, Item Response Theory, Models, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Wen-Chung; Jin, Kuan-Yu; Qiu, Xue-Lan; Wang, Lei – Journal of Educational Measurement, 2012
In some tests, examinees are required to choose a fixed number of items from a set of given items to answer. This practice creates a challenge to standard item response models, because more capable examinees may have an advantage by making wiser choices. In this study, we developed a new class of item response models to account for the choice…
Descriptors: Item Response Theory, Test Items, Selection, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Wen-Chung; Wu, Shiu-Lien – Journal of Educational Measurement, 2011
Rating scale items have been widely used in educational and psychological tests. These items require people to make subjective judgments, and these subjective judgments usually involve randomness. To account for this randomness, Wang, Wilson, and Shih proposed the random-effect rating scale model in which the threshold parameters are treated as…
Descriptors: Rating Scales, Models, Statistical Analysis, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Jiao, Hong; Wang, Shudong; He, Wei – Journal of Educational Measurement, 2013
This study demonstrated the equivalence between the Rasch testlet model and the three-level one-parameter testlet model and explored the Markov Chain Monte Carlo (MCMC) method for model parameter estimation in WINBUGS. The estimation accuracy from the MCMC method was compared with those from the marginalized maximum likelihood estimation (MMLE)…
Descriptors: Computation, Item Response Theory, Models, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego – Journal of Educational Measurement, 2007
This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…
Descriptors: Inferences, Models, Item Response Theory, Cognitive Measurement
Peer reviewed Peer reviewed
Reise, Steve P.; Yu, Jiayuan – Journal of Educational Measurement, 1990
Parameter recovery in the graded-response model was investigated using the MULTILOG computer program under default conditions. Results from 36 simulated data sets suggest that at least 500 examinees are needed to achieve adequate calibration under the graded model. Sample size had little influence on the true ability parameter's recovery. (SLD)
Descriptors: Computer Assisted Testing, Computer Simulation, Computer Software, Estimation (Mathematics)