NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Giada Spaccapanico Proietti; Mariagiulia Matteucci; Stefania Mignani; Bernard P. Veldkamp – Journal of Educational and Behavioral Statistics, 2024
Classical automated test assembly (ATA) methods assume fixed and known coefficients for the constraints and the objective function. This hypothesis is not true for the estimates of item response theory parameters, which are crucial elements in test assembly classical models. To account for uncertainty in ATA, we propose a chance-constrained…
Descriptors: Automation, Computer Assisted Testing, Ambiguity (Context), Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Monroe, Scott – Journal of Educational and Behavioral Statistics, 2021
This research proposes a new statistic for testing latent variable distribution fit for unidimensional item response theory (IRT) models. If the typical assumption of normality is violated, then item parameter estimates will be biased, and dependent quantities such as IRT score estimates will be adversely affected. The proposed statistic compares…
Descriptors: Item Response Theory, Simulation, Scores, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Grund, Simon; Lüdtke, Oliver; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2021
Large-scale assessments (LSAs) use Mislevy's "plausible value" (PV) approach to relate student proficiency to noncognitive variables administered in a background questionnaire. This method requires background variables to be completely observed, a requirement that is seldom fulfilled. In this article, we evaluate and compare the…
Descriptors: Data Analysis, Error of Measurement, Research Problems, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Camilli, Gregory; Fox, Jean-Paul – Journal of Educational and Behavioral Statistics, 2015
An aggregation strategy is proposed to potentially address practical limitation related to computing resources for two-level multidimensional item response theory (MIRT) models with large data sets. The aggregate model is derived by integration of the normal ogive model, and an adaptation of the stochastic approximation expectation maximization…
Descriptors: Factor Analysis, Item Response Theory, Grade 4, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Si, Yajuan; Reiter, Jerome P. – Journal of Educational and Behavioral Statistics, 2013
In many surveys, the data comprise a large number of categorical variables that suffer from item nonresponse. Standard methods for multiple imputation, like log-linear models or sequential regression imputation, can fail to capture complex dependencies and can be difficult to implement effectively in high dimensions. We present a fully Bayesian,…
Descriptors: Nonparametric Statistics, Bayesian Statistics, Measurement, Evaluation Methods