Publication Date
In 2025 | 8 |
Since 2024 | 21 |
Descriptor
Models | 13 |
Item Response Theory | 9 |
Simulation | 7 |
Evaluation Methods | 6 |
Item Analysis | 6 |
Test Items | 6 |
Algorithms | 5 |
Bayesian Statistics | 5 |
Causal Models | 5 |
Comparative Analysis | 5 |
Sample Size | 5 |
More ▼ |
Source
Journal of Educational and… | 21 |
Author
Benjamin W. Domingue | 2 |
Allan S. Cohen | 1 |
Andreas Frey | 1 |
Christoph König | 1 |
Chunying Qin | 1 |
Daniel McNeish | 1 |
Daoxuan Fu | 1 |
David Arthur | 1 |
David Rutkowski | 1 |
Ernest C. Davenport Jr. | 1 |
George Leckie | 1 |
More ▼ |
Publication Type
Journal Articles | 21 |
Reports - Research | 17 |
Reports - Descriptive | 2 |
Reports - Evaluative | 2 |
Education Level
Secondary Education | 4 |
Elementary Education | 2 |
Junior High Schools | 2 |
Middle Schools | 2 |
Early Childhood Education | 1 |
Elementary Secondary Education | 1 |
Grade 2 | 1 |
Grade 8 | 1 |
Grade 9 | 1 |
High Schools | 1 |
Primary Education | 1 |
More ▼ |
Audience
Location
United Kingdom (England) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 1 |
National Longitudinal Study… | 1 |
Program for International… | 1 |
Wechsler Adult Intelligence… | 1 |
What Works Clearinghouse Rating
Roy Levy; Daniel McNeish – Journal of Educational and Behavioral Statistics, 2025
Research in education and behavioral sciences often involves the use of latent variable models that are related to indicators, as well as related to covariates or outcomes. Such models are subject to interpretational confounding, which occurs when fitting the model with covariates or outcomes alters the results for the measurement model. This has…
Descriptors: Models, Statistical Analysis, Measurement, Data Interpretation
Sang-June Park; Youjae Yi – Journal of Educational and Behavioral Statistics, 2024
Previous research explicates ordinal and disordinal interactions through the concept of the "crossover point." This point is determined via simple regression models of a focal predictor at specific moderator values and signifies the intersection of these models. An interaction effect is labeled as disordinal (or ordinal) when the…
Descriptors: Interaction, Predictor Variables, Causal Models, Mathematical Models
Ernest C. Davenport Jr.; Mark L. Davison; Kyungin Park – Journal of Educational and Behavioral Statistics, 2024
The following study shows how reparameterizations and constraints of the general linear model can serve to parse quantitative and qualitative aspects of predictors. We demonstrate three different approaches. The study uses data from the High School Longitudinal Study of 2009 on mathematics course-taking and achievement as an example. Results show…
Descriptors: High School Students, Mathematics Instruction, Mathematics Achievement, Grade 9
Joemari Olea; Kevin Carl Santos – Journal of Educational and Behavioral Statistics, 2024
Although the generalized deterministic inputs, noisy "and" gate model (G-DINA; de la Torre, 2011) is a general cognitive diagnosis model (CDM), it does not account for the heterogeneity that is rooted from the existing latent groups in the population of examinees. To address this, this study proposes the mixture G-DINA model, a CDM that…
Descriptors: Cognitive Measurement, Models, Algorithms, Simulation
Gerhard Tutz; Pascal Jordan – Journal of Educational and Behavioral Statistics, 2024
A general framework of latent trait item response models for continuous responses is given. In contrast to classical test theory (CTT) models, which traditionally distinguish between true scores and error scores, the responses are clearly linked to latent traits. It is shown that CTT models can be derived as special cases, but the model class is…
Descriptors: Item Response Theory, Responses, Scores, Models
Jean-Paul Fox – Journal of Educational and Behavioral Statistics, 2025
Popular item response theory (IRT) models are considered complex, mainly due to the inclusion of a random factor variable (latent variable). The random factor variable represents the incidental parameter problem since the number of parameters increases when including data of new persons. Therefore, IRT models require a specific estimation method…
Descriptors: Sample Size, Item Response Theory, Accuracy, Bayesian Statistics
David Arthur; Hua-Hua Chang – Journal of Educational and Behavioral Statistics, 2024
Cognitive diagnosis models (CDMs) are the assessment tools that provide valuable formative feedback about skill mastery at both the individual and population level. Recent work has explored the performance of CDMs with small sample sizes but has focused solely on the estimates of individual profiles. The current research focuses on obtaining…
Descriptors: Algorithms, Models, Computation, Cognitive Measurement
Daoxuan Fu; Chunying Qin; Zhaosheng Luo; Yujun Li; Xiaofeng Yu; Ziyu Ye – Journal of Educational and Behavioral Statistics, 2025
One of the central components of cognitive diagnostic assessment is the Q-matrix, which is an essential loading indicator matrix and is typically constructed by subject matter experts. Nonetheless, to a large extent, the construction of Q-matrix remains a subjective process and might lead to misspecifications. Many researchers have recognized the…
Descriptors: Q Methodology, Matrices, Diagnostic Tests, Cognitive Measurement
Peter Z. Schochet – Journal of Educational and Behavioral Statistics, 2025
Random encouragement designs evaluate treatments that aim to increase participation in a program or activity. These randomized controlled trials (RCTs) can also assess the mediated effects of participation itself on longer term outcomes using a complier average causal effect (CACE) estimation framework. This article considers power analysis…
Descriptors: Statistical Analysis, Computation, Causal Models, Research Design
William R. Dardick; Jeffrey R. Harring – Journal of Educational and Behavioral Statistics, 2025
Simulation studies are the basic tools of quantitative methodologists used to obtain empirical solutions to statistical problems that may be impossible to derive through direct mathematical computations. The successful execution of many simulation studies relies on the accurate generation of correlated multivariate data that adhere to a particular…
Descriptors: Statistics, Statistics Education, Problem Solving, Multivariate Analysis
Kazuhiro Yamaguchi – Journal of Educational and Behavioral Statistics, 2025
This study proposes a Bayesian method for diagnostic classification models (DCMs) for a partially known Q-matrix setting between exploratory and confirmatory DCMs. This Q-matrix setting is practical and useful because test experts have pre-knowledge of the Q-matrix but cannot readily specify it completely. The proposed method employs priors for…
Descriptors: Models, Classification, Bayesian Statistics, Evaluation Methods
Jochen Ranger; Christoph König; Benjamin W. Domingue; Jörg-Tobias Kuhn; Andreas Frey – Journal of Educational and Behavioral Statistics, 2024
In the existing multidimensional extensions of the log-normal response time (LNRT) model, the log response times are decomposed into a linear combination of several latent traits. These models are fully compensatory as low levels on traits can be counterbalanced by high levels on other traits. We propose an alternative multidimensional extension…
Descriptors: Models, Statistical Distributions, Item Response Theory, Response Rates (Questionnaires)
Joakim Wallmark; James O. Ramsay; Juan Li; Marie Wiberg – Journal of Educational and Behavioral Statistics, 2024
Item response theory (IRT) models the relationship between the possible scores on a test item against a test taker's attainment of the latent trait that the item is intended to measure. In this study, we compare two models for tests with polytomously scored items: the optimal scoring (OS) model, a nonparametric IRT model based on the principles of…
Descriptors: Item Response Theory, Test Items, Models, Scoring
Justin L. Kern – Journal of Educational and Behavioral Statistics, 2024
Given the frequent presence of slipping and guessing in item responses, models for the inclusion of their effects are highly important. Unfortunately, the most common model for their inclusion, the four-parameter item response theory model, potentially has severe deficiencies related to its possible unidentifiability. With this issue in mind, the…
Descriptors: Item Response Theory, Models, Bayesian Statistics, Generalization
Maria Bolsinova; Jesper Tijmstra; Leslie Rutkowski; David Rutkowski – Journal of Educational and Behavioral Statistics, 2024
Profile analysis is one of the main tools for studying whether differential item functioning can be related to specific features of test items. While relevant, profile analysis in its current form has two restrictions that limit its usefulness in practice: It assumes that all test items have equal discrimination parameters, and it does not test…
Descriptors: Test Items, Item Analysis, Generalizability Theory, Achievement Tests
Previous Page | Next Page »
Pages: 1 | 2