Publication Date
In 2025 | 1 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 6 |
Descriptor
Source
Journal of Educational and… | 13 |
Author
Algina, James | 2 |
Ariet, Mario | 1 |
Azen, Razia | 1 |
Boik, Robert J. | 1 |
Budescu, David V. | 1 |
Carter, Randy L. | 1 |
Coombs, William T. | 1 |
Fisher, Thomas | 1 |
Hafdahl, Adam R. | 1 |
Hamilton, Laura | 1 |
James E. Pustejovsky | 1 |
More ▼ |
Publication Type
Journal Articles | 13 |
Reports - Evaluative | 13 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
James E. Pustejovsky; Man Chen – Journal of Educational and Behavioral Statistics, 2024
Meta-analyses of educational research findings frequently involve statistically dependent effect size estimates. Meta-analysts have often addressed dependence issues using ad hoc approaches that involve modifying the data to conform to the assumptions of models for independent effect size estimates, such as by aggregating estimates to obtain one…
Descriptors: Meta Analysis, Multivariate Analysis, Effect Size, Evaluation Methods
William R. Dardick; Jeffrey R. Harring – Journal of Educational and Behavioral Statistics, 2025
Simulation studies are the basic tools of quantitative methodologists used to obtain empirical solutions to statistical problems that may be impossible to derive through direct mathematical computations. The successful execution of many simulation studies relies on the accurate generation of correlated multivariate data that adhere to a particular…
Descriptors: Statistics, Statistics Education, Problem Solving, Multivariate Analysis
Schochet, Peter Z. – Journal of Educational and Behavioral Statistics, 2020
This article discusses estimation of average treatment effects for randomized controlled trials (RCTs) using grouped administrative data to help improve data access. The focus is on design-based estimators, derived using the building blocks of experiments, that are conducive to grouped data for a wide range of RCT designs, including clustered and…
Descriptors: Randomized Controlled Trials, Data Analysis, Research Design, Multivariate Analysis
Vidotto, Davide; Vermunt, Jeroen K.; van Deun, Katrijn – Journal of Educational and Behavioral Statistics, 2018
With this article, we propose using a Bayesian multilevel latent class (BMLC; or mixture) model for the multiple imputation of nested categorical data. Unlike recently developed methods that can only pick up associations between pairs of variables, the multilevel mixture model we propose is flexible enough to automatically deal with complex…
Descriptors: Bayesian Statistics, Multivariate Analysis, Data, Hierarchical Linear Modeling
Hafdahl, Adam R. – Journal of Educational and Behavioral Statistics, 2007
The originally proposed multivariate meta-analysis approach for correlation matrices--analyze Pearson correlations, with each study's observed correlations replacing their population counterparts in its conditional-covariance matrix--performs poorly. Two refinements are considered: Analyze Fisher Z-transformed correlations, and substitute better…
Descriptors: Monte Carlo Methods, Correlation, Meta Analysis, Matrices

Thomas, D. Roland – Journal of Educational and Behavioral Statistics, 1997
Criteria for assessing variable performance in multivariate analysis of variance (MANOVA) are considered, examining criteria suggested by Huberty and Wisenbaker (1992), the contribution to linear discriminant function scores and the contribution to grouping variable effects. It is proposed that the two criteria be amalgamated as the contribution…
Descriptors: Criteria, Evaluation Methods, Multivariate Analysis
Azen, Razia; Budescu, David V. – Journal of Educational and Behavioral Statistics, 2006
Dominance analysis (DA) is a method used to compare the relative importance of predictors in multiple regression. DA determines the dominance of one predictor over another by comparing their additional R[squared] contributions across all subset models. In this article DA is extended to multivariate models by identifying a minimal set of criteria…
Descriptors: Multivariate Analysis, Predictor Variables, Multiple Regression Analysis, Comparative Analysis
Tekwe, Carmen D.; Carter, Randy L.; Ma, Chang-Xing; Algina, James; Lucas, Maurice E.; Roth, Jeffrey; Ariet, Mario; Fisher, Thomas; Resnick, Michael B. – Journal of Educational and Behavioral Statistics, 2004
Hierarchical Linear Models (HLM) have been used extensively for value-added analysis, adjusting for important student and school-level covariates such as socioeconomic status. A recently proposed alternative, the Layered Mixed Effects Model (LMEM) also analyzes learning gains, but ignores sociodemographic factors. Other features of LMEM, such as…
Descriptors: Accountability, Academic Achievement, Mathematical Models, Statistical Analysis

Boik, Robert J. – Journal of Educational and Behavioral Statistics, 1997
An analysis of repeated measures designs is proposed that uses an empirical Bayes estimator of the covariance matrix. The proposed analysis behaves like a univariate analysis when sample size is small or sphericity nearly satisfied, but behaves like multivariate analysis when sample size is large or sphericity is strongly violated. (SLD)
Descriptors: Bayesian Statistics, Estimation (Mathematics), Multivariate Analysis, Research Design

Seltzer, Michael H.; And Others – Journal of Educational and Behavioral Statistics, 1996
The Gibbs sampling algorithms presented by M. H. Seltzer (1993) are fully generalized to a broad range of settings in which vectors of random regression parameters in the hierarchical model are assumed multivariate normally or multivariate "t" distributed across groups. The use of a fully Bayesian approach is discussed. (SLD)
Descriptors: Algorithms, Bayesian Statistics, Estimation (Mathematics), Multivariate Analysis

Coombs, William T.; Algina, James – Journal of Educational and Behavioral Statistics, 1996
Type I error rates for the Johansen test were estimated using simulated data for a variety of conditions. Results indicate that Type I error rates for the Johansen test depend heavily on the number of groups and the ratio of the smallest sample size to the number of dependent variables. Sample size guidelines are presented. (SLD)
Descriptors: Group Membership, Hypothesis Testing, Multivariate Analysis, Robustness (Statistics)

Thum, Yeow Meng – Journal of Educational and Behavioral Statistics, 1997
A class of two-stage models is developed to accommodate three common characteristics of behavioral data: (1) its multivariate nature; (2) the typical small sample size; and (3) the possibility of missing observations. The model, as illustrated, permits estimation of the full spectrum of plausible measurement error structures. (SLD)
Descriptors: Bayesian Statistics, Behavior Patterns, Estimation (Mathematics), Maximum Likelihood Statistics
McCaffrey, Daniel F.; Lockwood, J. R.; Koretz, Daniel; Louis, Thomas A.; Hamilton, Laura – Journal of Educational and Behavioral Statistics, 2004
The use of complex value-added models that attempt to isolate the contributions of teachers or schools to student development is increasing. Several variations on these models are being applied in the research literature, and policy makers have expressed interest in using these models for evaluating teachers and schools. In this article, we…
Descriptors: Student Characteristics, Teacher Evaluation, Student Development, School Effectiveness