Publication Date
In 2025 | 1 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 8 |
Descriptor
Bayesian Statistics | 10 |
Computer Assisted Testing | 10 |
Accuracy | 4 |
Item Response Theory | 4 |
Models | 4 |
Reaction Time | 4 |
Simulation | 3 |
Test Construction | 3 |
Test Items | 3 |
Ability | 2 |
Adaptive Testing | 2 |
More ▼ |
Source
Journal of Educational and… | 10 |
Author
Douglas, Jeffrey A. | 2 |
Wang, Chun | 2 |
Avetisyan, Marianna | 1 |
Berger, Martijn P. F. | 1 |
Chang, Hua-Hua | 1 |
Chen, Ping | 1 |
Culpepper, Steven Andrew | 1 |
Fan, Zhewen | 1 |
Fox, Jean-Paul | 1 |
Gao, Wei | 1 |
Jiao, Hong | 1 |
More ▼ |
Publication Type
Journal Articles | 10 |
Reports - Research | 7 |
Reports - Evaluative | 2 |
Reports - Descriptive | 1 |
Education Level
Audience
Researchers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Yang Du; Susu Zhang – Journal of Educational and Behavioral Statistics, 2025
Item compromise has long posed challenges in educational measurement, jeopardizing both test validity and test security of continuous tests. Detecting compromised items is therefore crucial to address this concern. The present literature on compromised item detection reveals two notable gaps: First, the majority of existing methods are based upon…
Descriptors: Item Response Theory, Item Analysis, Bayesian Statistics, Educational Assessment
Zhu, Hongyue; Jiao, Hong; Gao, Wei; Meng, Xiangbin – Journal of Educational and Behavioral Statistics, 2023
Change-point analysis (CPA) is a method for detecting abrupt changes in parameter(s) underlying a sequence of random variables. It has been applied to detect examinees' aberrant test-taking behavior by identifying abrupt test performance change. Previous studies utilized maximum likelihood estimations of ability parameters, focusing on detecting…
Descriptors: Bayesian Statistics, Test Wiseness, Behavior Problems, Reaction Time
Wang, Chun; Xu, Gongjun; Shang, Zhuoran; Kuncel, Nathan – Journal of Educational and Behavioral Statistics, 2018
The modern web-based technology greatly popularizes computer-administered testing, also known as online testing. When these online tests are administered continuously within a certain "testing window," many items are likely to be exposed and compromised, posing a type of test security concern. In addition, if the testing time is limited,…
Descriptors: Computer Assisted Testing, Cheating, Guessing (Tests), Item Response Theory
Wang, Shiyu; Yang, Yan; Culpepper, Steven Andrew; Douglas, Jeffrey A. – Journal of Educational and Behavioral Statistics, 2018
A family of learning models that integrates a cognitive diagnostic model and a higher-order, hidden Markov model in one framework is proposed. This new framework includes covariates to model skill transition in the learning environment. A Bayesian formulation is adopted to estimate parameters from a learning model. The developed methods are…
Descriptors: Skill Development, Cognitive Measurement, Cognitive Processes, Markov Processes
Chen, Ping – Journal of Educational and Behavioral Statistics, 2017
Calibration of new items online has been an important topic in item replenishment for multidimensional computerized adaptive testing (MCAT). Several online calibration methods have been proposed for MCAT, such as multidimensional "one expectation-maximization (EM) cycle" (M-OEM) and multidimensional "multiple EM cycles"…
Descriptors: Test Items, Item Response Theory, Test Construction, Adaptive Testing
Marianti, Sukaesi; Fox, Jean-Paul; Avetisyan, Marianna; Veldkamp, Bernard P.; Tijmstra, Jesper – Journal of Educational and Behavioral Statistics, 2014
Many standardized tests are now administered via computer rather than paper-and-pencil format. In a computer-based testing environment, it is possible to record not only the test taker's response to each question (item) but also the amount of time spent by the test taker in considering and answering each item. Response times (RTs) provide…
Descriptors: Reaction Time, Response Style (Tests), Computer Assisted Testing, Bayesian Statistics
Wang, Chun; Fan, Zhewen; Chang, Hua-Hua; Douglas, Jeffrey A. – Journal of Educational and Behavioral Statistics, 2013
The item response times (RTs) collected from computerized testing represent an underutilized type of information about items and examinees. In addition to knowing the examinees' responses to each item, we can investigate the amount of time examinees spend on each item. Current models for RTs mainly focus on parametric models, which have the…
Descriptors: Reaction Time, Computer Assisted Testing, Test Items, Accuracy
Wainer, Howard – Journal of Educational and Behavioral Statistics, 2010
In this essay, the author tries to look forward into the 21st century to divine three things: (i) What skills will researchers in the future need to solve the most pressing problems? (ii) What are some of the most likely candidates to be those problems? and (iii) What are some current areas of research that seem mined out and should not distract…
Descriptors: Research Skills, Researchers, Internet, Access to Information

Spray, Judith A.; Reckase, Mark D. – Journal of Educational and Behavioral Statistics, 1996
Two procedures for classifying examinees into categories, one based on the sequential probability ratio test (SPRT) and the other on sequential Bayes methodology, were compared to determine which required fewer items for classification. Results showed that the SPRT procedure requires fewer items to achieve the same accuracy level. (SLD)
Descriptors: Ability, Bayesian Statistics, Classification, Comparative Analysis

Berger, Martijn P. F.; Veerkamp, Wim J. J. – Journal of Educational and Behavioral Statistics, 1997
Some alternative criteria for item selection in adaptive testing are proposed that take into account uncertainty in the ability estimates. A simulation study shows that the likelihood weighted information criterion is a good alternative to the maximum information criterion. Another good alternative uses a Bayesian expected a posteriori estimator.…
Descriptors: Ability, Adaptive Testing, Bayesian Statistics, Computer Assisted Testing