Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 6 |
Descriptor
Classification | 6 |
Error of Measurement | 6 |
Computation | 3 |
Statistical Analysis | 3 |
Bayesian Statistics | 2 |
Correlation | 2 |
Models | 2 |
Multivariate Analysis | 2 |
Regression (Statistics) | 2 |
Sample Size | 2 |
Scores | 2 |
More ▼ |
Source
Journal of Educational and… | 6 |
Author
Publication Type
Journal Articles | 6 |
Reports - Research | 5 |
Reports - Descriptive | 1 |
Education Level
Elementary Secondary Education | 1 |
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
Netherlands | 1 |
Pennsylvania | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Francesco Innocenti; Math J. J. M. Candel; Frans E. S. Tan; Gerard J. P. van Breukelen – Journal of Educational and Behavioral Statistics, 2024
Normative studies are needed to obtain norms for comparing individuals with the reference population on relevant clinical or educational measures. Norms can be obtained in an efficient way by regressing the test score on relevant predictors, such as age and sex. When several measures are normed with the same sample, a multivariate regression-based…
Descriptors: Sample Size, Multivariate Analysis, Error of Measurement, Regression (Statistics)
Grund, Simon; Lüdtke, Oliver; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2023
Multiple imputation (MI) is a popular method for handling missing data. In education research, it can be challenging to use MI because the data often have a clustered structure that need to be accommodated during MI. Although much research has considered applications of MI in hierarchical data, little is known about its use in cross-classified…
Descriptors: Educational Research, Data Analysis, Error of Measurement, Computation
Shear, Benjamin R.; Reardon, Sean F. – Journal of Educational and Behavioral Statistics, 2021
This article describes an extension to the use of heteroskedastic ordered probit (HETOP) models to estimate latent distributional parameters from grouped, ordered-categorical data by pooling across multiple waves of data. We illustrate the method with aggregate proficiency data reporting the number of students in schools or districts scoring in…
Descriptors: Statistical Analysis, Computation, Regression (Statistics), Sample Size
Grabovsky, Irina; Wainer, Howard – Journal of Educational and Behavioral Statistics, 2017
In this article, we extend the methodology of the Cut-Score Operating Function that we introduced previously and apply it to a testing scenario with multiple independent components and different testing policies. We derive analytically the overall classification error rate for a test battery under the policy when several retakes are allowed for…
Descriptors: Cutting Scores, Weighted Scores, Classification, Testing
Longford, Nicholas Tibor – Journal of Educational and Behavioral Statistics, 2016
We address the problem of selecting the best of a set of units based on a criterion variable, when its value is recorded for every unit subject to estimation, measurement, or another source of error. The solution is constructed in a decision-theoretical framework, incorporating the consequences (ramifications) of the various kinds of error that…
Descriptors: Decision Making, Classification, Guidelines, Undergraduate Students
Han, Bing; Dalal, Siddhartha R.; McCaffrey, Daniel F. – Journal of Educational and Behavioral Statistics, 2012
There is widespread interest in using various statistical inference tools as a part of the evaluations for individual teachers and schools. Evaluation systems typically involve classifying hundreds or even thousands of teachers or schools according to their estimated performance. Many current evaluations are largely based on individual estimates…
Descriptors: Statistical Inference, Error of Measurement, Classification, Statistical Analysis