NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Johnson, Matthew S.; Sinharay, Sandip – Journal of Educational and Behavioral Statistics, 2020
One common score reported from diagnostic classification assessments is the vector of posterior means of the skill mastery indicators. As with any assessment, it is important to derive and report estimates of the reliability of the reported scores. After reviewing a reliability measure suggested by Templin and Bradshaw, this article suggests three…
Descriptors: Reliability, Probability, Skill Development, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Pang, Bo; Nijkamp, Erik; Wu, Ying Nian – Journal of Educational and Behavioral Statistics, 2020
This review covers the core concepts and design decisions of TensorFlow. TensorFlow, originally created by researchers at Google, is the most popular one among the plethora of deep learning libraries. In the field of deep learning, neural networks have achieved tremendous success and gained wide popularity in various areas. This family of models…
Descriptors: Artificial Intelligence, Regression (Statistics), Models, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Lyu, Weicong; Kim, Jee-Seon; Suk, Youmi – Journal of Educational and Behavioral Statistics, 2023
This article presents a latent class model for multilevel data to identify latent subgroups and estimate heterogeneous treatment effects. Unlike sequential approaches that partition data first and then estimate average treatment effects (ATEs) within classes, we employ a Bayesian procedure to jointly estimate mixing probability, selection, and…
Descriptors: Hierarchical Linear Modeling, Bayesian Statistics, Causal Models, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Chan, Wendy – Journal of Educational and Behavioral Statistics, 2018
Policymakers have grown increasingly interested in how experimental results may generalize to a larger population. However, recently developed propensity score-based methods are limited by small sample sizes, where the experimental study is generalized to a population that is at least 20 times larger. This is particularly problematic for methods…
Descriptors: Computation, Generalization, Probability, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Longford, Nicholas Tibor – Journal of Educational and Behavioral Statistics, 2016
We address the problem of selecting the best of a set of units based on a criterion variable, when its value is recorded for every unit subject to estimation, measurement, or another source of error. The solution is constructed in a decision-theoretical framework, incorporating the consequences (ramifications) of the various kinds of error that…
Descriptors: Decision Making, Classification, Guidelines, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Nydick, Steven W. – Journal of Educational and Behavioral Statistics, 2014
The sequential probability ratio test (SPRT) is a common method for terminating item response theory (IRT)-based adaptive classification tests. To decide whether a classification test should stop, the SPRT compares a simple log-likelihood ratio, based on the classification bound separating two categories, to prespecified critical values. As has…
Descriptors: Probability, Item Response Theory, Models, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Tipton, Elizabeth – Journal of Educational and Behavioral Statistics, 2013
As a result of the use of random assignment to treatment, randomized experiments typically have high internal validity. However, units are very rarely randomly selected from a well-defined population of interest into an experiment; this results in low external validity. Under nonrandom sampling, this means that the estimate of the sample average…
Descriptors: Generalization, Experiments, Classification, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Zwick, Rebecca; Lenaburg, Lubella – Journal of Educational and Behavioral Statistics, 2009
In certain data analyses (e.g., multiple discriminant analysis and multinomial log-linear modeling), classification decisions are made based on the estimated posterior probabilities that individuals belong to each of several distinct categories. In the Bayesian network literature, this type of classification is often accomplished by assigning…
Descriptors: Classification, Bayesian Statistics, Network Analysis, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Monahan, Patrick O.; McHorney, Colleen A.; Stump, Timothy E.; Perkins, Anthony J. – Journal of Educational and Behavioral Statistics, 2007
Previous methodological and applied studies that used binary logistic regression (LR) for detection of differential item functioning (DIF) in dichotomously scored items either did not report an effect size or did not employ several useful measures of DIF magnitude derived from the LR model. Equations are provided for these effect size indices.…
Descriptors: Classification, Effect Size, Probability, Test Bias
Peer reviewed Peer reviewed
Spray, Judith A.; Reckase, Mark D. – Journal of Educational and Behavioral Statistics, 1996
Two procedures for classifying examinees into categories, one based on the sequential probability ratio test (SPRT) and the other on sequential Bayes methodology, were compared to determine which required fewer items for classification. Results showed that the SPRT procedure requires fewer items to achieve the same accuracy level. (SLD)
Descriptors: Ability, Bayesian Statistics, Classification, Comparative Analysis