NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Joakim Wallmark; James O. Ramsay; Juan Li; Marie Wiberg – Journal of Educational and Behavioral Statistics, 2024
Item response theory (IRT) models the relationship between the possible scores on a test item against a test taker's attainment of the latent trait that the item is intended to measure. In this study, we compare two models for tests with polytomously scored items: the optimal scoring (OS) model, a nonparametric IRT model based on the principles of…
Descriptors: Item Response Theory, Test Items, Models, Scoring
Peer reviewed Peer reviewed
Direct linkDirect link
Lei Guo; Wenjie Zhou; Xiao Li – Journal of Educational and Behavioral Statistics, 2024
The testlet design is very popular in educational and psychological assessments. This article proposes a new cognitive diagnosis model, the multiple-choice cognitive diagnostic testlet (MC-CDT) model for tests using testlets consisting of MC items. The MC-CDT model uses the original examinees' responses to MC items instead of dichotomously scored…
Descriptors: Multiple Choice Tests, Diagnostic Tests, Accuracy, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Jordan M. Wheeler; Allan S. Cohen; Shiyu Wang – Journal of Educational and Behavioral Statistics, 2024
Topic models are mathematical and statistical models used to analyze textual data. The objective of topic models is to gain information about the latent semantic space of a set of related textual data. The semantic space of a set of textual data contains the relationship between documents and words and how they are used. Topic models are becoming…
Descriptors: Semantics, Educational Assessment, Evaluators, Reliability
Peer reviewed Peer reviewed
Direct linkDirect link
Robitzsch, Alexander; Lüdtke, Oliver – Journal of Educational and Behavioral Statistics, 2022
One of the primary goals of international large-scale assessments in education is the comparison of country means in student achievement. This article introduces a framework for discussing differential item functioning (DIF) for such mean comparisons. We compare three different linking methods: concurrent scaling based on full invariance,…
Descriptors: Test Bias, International Assessment, Scaling, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Monroe, Scott – Journal of Educational and Behavioral Statistics, 2021
This research proposes a new statistic for testing latent variable distribution fit for unidimensional item response theory (IRT) models. If the typical assumption of normality is violated, then item parameter estimates will be biased, and dependent quantities such as IRT score estimates will be adversely affected. The proposed statistic compares…
Descriptors: Item Response Theory, Simulation, Scores, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Savalei, Victoria; Rhemtulla, Mijke – Journal of Educational and Behavioral Statistics, 2017
In many modeling contexts, the variables in the model are linear composites of the raw items measured for each participant; for instance, regression and path analysis models rely on scale scores, and structural equation models often use parcels as indicators of latent constructs. Currently, no analytic estimation method exists to appropriately…
Descriptors: Computation, Statistical Analysis, Test Items, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Magis, David; Tuerlinckx, Francis; De Boeck, Paul – Journal of Educational and Behavioral Statistics, 2015
This article proposes a novel approach to detect differential item functioning (DIF) among dichotomously scored items. Unlike standard DIF methods that perform an item-by-item analysis, we propose the "LR lasso DIF method": logistic regression (LR) model is formulated for all item responses. The model contains item-specific intercepts,…
Descriptors: Test Bias, Test Items, Regression (Statistics), Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Ramsay, James O.; Wiberg, Marie – Journal of Educational and Behavioral Statistics, 2017
This article promotes the use of modern test theory in testing situations where sum scores for binary responses are now used. It directly compares the efficiencies and biases of classical and modern test analyses and finds an improvement in the root mean squared error of ability estimates of about 5% for two designed multiple-choice tests and…
Descriptors: Scoring, Test Theory, Computation, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Passos, Valeria Lima; Berger, Martijn P. F.; Tan, Frans E. S. – Journal of Educational and Behavioral Statistics, 2008
During the early stage of computerized adaptive testing (CAT), item selection criteria based on Fisher"s information often produce less stable latent trait estimates than the Kullback-Leibler global information criterion. Robustness against early stage instability has been reported for the D-optimality criterion in a polytomous CAT with the…
Descriptors: Computer Assisted Testing, Adaptive Testing, Evaluation Criteria, Item Analysis
Peer reviewed Peer reviewed
Rudas, Tamas; Zwick, Rebecca – Journal of Educational and Behavioral Statistics, 1997
The mixture index of fit (T. Rudas et al, 1994) is used to estimate the fraction of a population for which differential item functioning (DIF) occurs, and this approach is compared to the Mantel Haenszel test of DIF. The proposed noniterative procedure provides information about data portions contributing to DIF. (SLD)
Descriptors: Comparative Analysis, Estimation (Mathematics), Item Bias, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
van der Linden, Wim J.; Ariel, Adelaide; Veldkamp, Bernard P. – Journal of Educational and Behavioral Statistics, 2006
Test-item writing efforts typically results in item pools with an undesirable correlational structure between the content attributes of the items and their statistical information. If such pools are used in computerized adaptive testing (CAT), the algorithm may be forced to select items with less than optimal information, that violate the content…
Descriptors: Adaptive Testing, Computer Assisted Testing, Test Items, Item Banks