Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 6 |
Descriptor
Source
Journal of Educational and… | 7 |
Author
Cai, Yan | 1 |
Cohen, Allan | 1 |
Jewsbury, Paul A. | 1 |
Luo, Fen | 1 |
Ren, Hao | 1 |
Revuelta, Javier | 1 |
Sinharay, Sandip | 1 |
Tan, Qingrong | 1 |
Thissen, David | 1 |
Tu, Dongbo | 1 |
Wang, Shiyu | 1 |
More ▼ |
Publication Type
Journal Articles | 7 |
Reports - Research | 3 |
Reports - Descriptive | 2 |
Reports - Evaluative | 2 |
Education Level
Elementary Education | 1 |
Grade 4 | 1 |
Intermediate Grades | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
National Assessment of… | 1 |
What Works Clearinghouse Rating
Development of a High-Accuracy and Effective Online Calibration Method in CD-CAT Based on Gini Index
Tan, Qingrong; Cai, Yan; Luo, Fen; Tu, Dongbo – Journal of Educational and Behavioral Statistics, 2023
To improve the calibration accuracy and calibration efficiency of cognitive diagnostic computerized adaptive testing (CD-CAT) for new items and, ultimately, contribute to the widespread application of CD-CAT in practice, the current article proposed a Gini-based online calibration method that can simultaneously calibrate the Q-matrix and item…
Descriptors: Cognitive Tests, Computer Assisted Testing, Adaptive Testing, Accuracy
Wang, Shiyu; Xiao, Houping; Cohen, Allan – Journal of Educational and Behavioral Statistics, 2021
An adaptive weight estimation approach is proposed to provide robust latent ability estimation in computerized adaptive testing (CAT) with response revision. This approach assigns different weights to each distinct response to the same item when response revision is allowed in CAT. Two types of weight estimation procedures, nonfunctional and…
Descriptors: Computer Assisted Testing, Adaptive Testing, Computation, Robustness (Statistics)
van der Linden, Wim J.; Ren, Hao – Journal of Educational and Behavioral Statistics, 2020
The Bayesian way of accounting for the effects of error in the ability and item parameters in adaptive testing is through the joint posterior distribution of all parameters. An optimized Markov chain Monte Carlo algorithm for adaptive testing is presented, which samples this distribution in real time to score the examinee's ability and optimally…
Descriptors: Bayesian Statistics, Adaptive Testing, Error of Measurement, Markov Processes
Jewsbury, Paul A.; van Rijn, Peter W. – Journal of Educational and Behavioral Statistics, 2020
In large-scale educational assessment data consistent with a simple-structure multidimensional item response theory (MIRT) model, where every item measures only one latent variable, separate unidimensional item response theory (UIRT) models for each latent variable are often calibrated for practical reasons. While this approach can be valid for…
Descriptors: Item Response Theory, Computation, Test Items, Adaptive Testing
Sinharay, Sandip – Journal of Educational and Behavioral Statistics, 2016
Meijer and van Krimpen-Stoop noted that the number of person-fit statistics (PFSs) that have been designed for computerized adaptive tests (CATs) is relatively modest. This article partially addresses that concern by suggesting three new PFSs for CATs. The statistics are based on tests for a change point and can be used to detect an abrupt change…
Descriptors: Computer Assisted Testing, Adaptive Testing, Item Response Theory, Goodness of Fit
Thissen, David – Journal of Educational and Behavioral Statistics, 2016
David Thissen, a professor in the Department of Psychology and Neuroscience, Quantitative Program at the University of North Carolina, has consulted and served on technical advisory committees for assessment programs that use item response theory (IRT) over the past couple decades. He has come to the conclusion that there are usually two purposes…
Descriptors: Item Response Theory, Test Construction, Testing Problems, Student Evaluation
Revuelta, Javier – Journal of Educational and Behavioral Statistics, 2004
This article presents a psychometric model for estimating ability and item-selection strategies in self-adapted testing. In contrast to computer adaptive testing, in self-adapted testing the examinees are allowed to select the difficulty of the items. The item-selection strategy is defined as the distribution of difficulty conditional on the…
Descriptors: Psychometrics, Adaptive Testing, Test Items, Evaluation Methods