Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 8 |
Descriptor
Bayesian Statistics | 9 |
Computer Software | 9 |
Monte Carlo Methods | 5 |
Markov Processes | 3 |
Models | 3 |
Data | 2 |
Data Analysis | 2 |
Hierarchical Linear Modeling | 2 |
Item Response Theory | 2 |
Network Analysis | 2 |
Statistical Bias | 2 |
More ▼ |
Source
Journal of Educational and… | 9 |
Author
Segawa, Eisuke | 2 |
Andrew Gelman | 1 |
Baker, Ryan S. | 1 |
Clifton, James P. | 1 |
Cobb, Patrice R. | 1 |
Curry, Susan J. | 1 |
Daniel Lee | 1 |
Depaoli, Sarah | 1 |
Emery, Sherry | 1 |
Gasevic, Dragan | 1 |
Hennessy, Emily A. | 1 |
More ▼ |
Publication Type
Journal Articles | 9 |
Reports - Research | 6 |
Reports - Descriptive | 2 |
Reports - Evaluative | 1 |
Education Level
Secondary Education | 1 |
Audience
Location
United States | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 1 |
What Works Clearinghouse Rating
Paganin, Sally; Paciorek, Christopher J.; Wehrhahn, Claudia; Rodríguez, Abel; Rabe-Hesketh, Sophia; de Valpine, Perry – Journal of Educational and Behavioral Statistics, 2023
Item response theory (IRT) models typically rely on a normality assumption for subject-specific latent traits, which is often unrealistic in practice. Semiparametric extensions based on Dirichlet process mixtures (DPMs) offer a more flexible representation of the unknown distribution of the latent trait. However, the use of such models in the IRT…
Descriptors: Bayesian Statistics, Item Response Theory, Guidance, Evaluation Methods
Zhan, Peida; Jiao, Hong; Man, Kaiwen; Wang, Lijun – Journal of Educational and Behavioral Statistics, 2019
In this article, we systematically introduce the just another Gibbs sampler (JAGS) software program to fit common Bayesian cognitive diagnosis models (CDMs) including the deterministic inputs, noisy "and" gate model; the deterministic inputs, noisy "or" gate model; the linear logistic model; the reduced reparameterized unified…
Descriptors: Bayesian Statistics, Computer Software, Models, Test Items
Polanin, Joshua R.; Hennessy, Emily A.; Tanner-Smith, Emily E. – Journal of Educational and Behavioral Statistics, 2017
Meta-analysis is a statistical technique that allows an analyst to synthesize effect sizes from multiple primary studies. To estimate meta-analysis models, the open-source statistical environment R is quickly becoming a popular choice. The meta-analytic community has contributed to this growth by developing numerous packages specific to…
Descriptors: Meta Analysis, Open Source Technology, Computer Software, Effect Size
Slater, Stefan; Joksimovic, Srecko; Kovanovic, Vitomir; Baker, Ryan S.; Gasevic, Dragan – Journal of Educational and Behavioral Statistics, 2017
In recent years, a wide array of tools have emerged for the purposes of conducting educational data mining (EDM) and/or learning analytics (LA) research. In this article, we hope to highlight some of the most widely used, most accessible, and most powerful tools available for the researcher interested in conducting EDM/LA research. We will…
Descriptors: Data Analysis, Data Processing, Computer Uses in Education, Educational Research
Depaoli, Sarah; Clifton, James P.; Cobb, Patrice R. – Journal of Educational and Behavioral Statistics, 2016
A review of the software Just Another Gibbs Sampler (JAGS) is provided. We cover aspects related to history and development and the elements a user needs to know to get started with the program, including (a) definition of the data, (b) definition of the model, (c) compilation of the model, and (d) initialization of the model. An example using a…
Descriptors: Monte Carlo Methods, Markov Processes, Computer Software, Models
Andrew Gelman; Daniel Lee; Jiqiang Guo – Journal of Educational and Behavioral Statistics, 2015
Stan is a free and open-source C++ program that performs Bayesian inference or optimization for arbitrary user-specified models and can be called from the command line, R, Python, Matlab, or Julia and has great promise for fitting large and complex statistical models in many areas of application. We discuss Stan from users' and developers'…
Descriptors: Programming Languages, Bayesian Statistics, Inferences, Monte Carlo Methods
McNeish, Daniel M. – Journal of Educational and Behavioral Statistics, 2016
Mixed-effects models (MEMs) and latent growth models (LGMs) are often considered interchangeable save the discipline-specific nomenclature. Software implementations of these models, however, are not interchangeable, particularly with small sample sizes. Restricted maximum likelihood estimation that mitigates small sample bias in MEMs has not been…
Descriptors: Models, Statistical Analysis, Hierarchical Linear Modeling, Sample Size
Segawa, Eisuke; Emery, Sherry; Curry, Susan J. – Journal of Educational and Behavioral Statistics, 2008
The generalized linear latent and mixed modeling (GLLAMM framework) includes many models such as hierarchical and structural equation models. However, GLLAMM cannot currently accommodate some models because it does not allow some parameters to be random. GLLAMM is extended to overcome the limitation by adding a submodel that specifies a…
Descriptors: Causal Models, Bayesian Statistics, Computer Software, Smoking
Segawa, Eisuke – Journal of Educational and Behavioral Statistics, 2005
Multi-indicator growth models were formulated as special three-level hierarchical generalized linear models to analyze growth of a trait latent variable measured by ordinal items. Items are nested within a time-point, and time-points are nested within subject. These models are special because they include factor analytic structure. This model can…
Descriptors: Bayesian Statistics, Mathematical Models, Factor Analysis, Computer Simulation