NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Astivia, Oscar L. Olvera; Zumbo, Bruno D. – Journal of Educational and Behavioral Statistics, 2019
The Vale and Maurelli algorithm is a widely used method that allows researchers to generate multivariate, nonnormal data with user-specified levels of skewness, excess kurtosis, and a correlation structure. Before obtaining the desired correlation structure, a transitional step requires the user to calculate the roots of a cubic polynomial…
Descriptors: Equations (Mathematics), Correlation, Statistical Analysis, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan, Ke-Hai; Kano, Yutaka – Journal of Educational and Behavioral Statistics, 2018
Meta-analysis plays a key role in combining studies to obtain more reliable results. In social, behavioral, and health sciences, measurement units are typically not well defined. More meaningful results can be obtained by standardizing the variables and via the analysis of the correlation matrix. Structural equation modeling (SEM) with the…
Descriptors: Meta Analysis, Structural Equation Models, Maximum Likelihood Statistics, Least Squares Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Hung, Lai-Fa; Wang, Wen-Chung – Journal of Educational and Behavioral Statistics, 2012
In the human sciences, ability tests or psychological inventories are often repeatedly conducted to measure growth. Standard item response models do not take into account possible autocorrelation in longitudinal data. In this study, the authors propose an item response model to account for autocorrelation. The proposed three-level model consists…
Descriptors: Item Response Theory, Correlation, Models, Longitudinal Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Choi, Jaehwa; Kim, Sunhee; Chen, Jinsong; Dannels, Sharon – Journal of Educational and Behavioral Statistics, 2011
The purpose of this study is to compare the maximum likelihood (ML) and Bayesian estimation methods for polychoric correlation (PCC) under diverse conditions using a Monte Carlo simulation. Two new Bayesian estimates, maximum a posteriori (MAP) and expected a posteriori (EAP), are compared to ML, the classic solution, to estimate PCC. Different…
Descriptors: Computation, Maximum Likelihood Statistics, Bayesian Statistics, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Jia, Yue; Stokes, Lynne; Harris, Ian; Wang, Yan – Journal of Educational and Behavioral Statistics, 2011
In this article, we consider estimation of parameters of random effects models from samples collected via complex multistage designs. Incorporation of sampling weights is one way to reduce estimation bias due to unequal probabilities of selection. Several weighting methods have been proposed in the literature for estimating the parameters of…
Descriptors: Sampling, Computation, Statistical Bias, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Hafdahl, Adam R. – Journal of Educational and Behavioral Statistics, 2008
Monte Carlo studies of several fixed-effects methods for combining and comparing correlation matrices have shown that two refinements improve estimation and inference substantially. With rare exception, however, these simulations have involved homogeneous data analyzed using conditional meta-analytic procedures. The present study builds on…
Descriptors: Monte Carlo Methods, Correlation, Matrices, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Hafdahl, Adam R. – Journal of Educational and Behavioral Statistics, 2007
The originally proposed multivariate meta-analysis approach for correlation matrices--analyze Pearson correlations, with each study's observed correlations replacing their population counterparts in its conditional-covariance matrix--performs poorly. Two refinements are considered: Analyze Fisher Z-transformed correlations, and substitute better…
Descriptors: Monte Carlo Methods, Correlation, Meta Analysis, Matrices
Peer reviewed Peer reviewed
Huitema, Bradley E.; And Others – Journal of Educational and Behavioral Statistics, 1996
Monte Carlo study results show that the runs test yields markedly asymmetrical error rates in the two tails and that neither directional nor nondirectional tests are satisfactory with respect to Type I errors. The test is not recommended for evaluating the independence of errors in time-series regression models. (SLD)
Descriptors: Correlation, Error of Measurement, Monte Carlo Methods, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Afshartous, David; de Leeuw, Jan – Journal of Educational and Behavioral Statistics, 2005
Multilevel modeling is an increasingly popular technique for analyzing hierarchical data. This article addresses the problem of predicting a future observable y[subscript *j] in the jth group of a hierarchical data set. Three prediction rules are considered and several analytical results on the relative performance of these prediction rules are…
Descriptors: Prediction, Models, Modeling (Psychology), Monte Carlo Methods
Peer reviewed Peer reviewed
Law, Kenneth S. – Journal of Educational and Behavioral Statistics, 1995
Two new methods of estimating the mean population correlation (M) and the standard deviation of population correlations (SD) were suggested and tested by Monte Carlo simulations. Results show no consistent advantage to using the Pearson correlation or Fisher's Z in estimating M or SD; estimates from all methods are similar. (SLD)
Descriptors: Computer Simulation, Correlation, Effect Size, Estimation (Mathematics)