Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 9 |
Descriptor
Data Analysis | 9 |
Error of Measurement | 9 |
Computation | 6 |
Research Problems | 3 |
Simulation | 3 |
Statistical Analysis | 3 |
Accuracy | 2 |
Evaluation Methods | 2 |
Longitudinal Studies | 2 |
Mathematical Applications | 2 |
Models | 2 |
More ▼ |
Source
Journal of Educational and… | 9 |
Author
Grund, Simon | 2 |
Lüdtke, Oliver | 2 |
Robitzsch, Alexander | 2 |
Cao, Jing | 1 |
Cheng, Ying | 1 |
Diao, Qi | 1 |
Hayes, Timothy | 1 |
Ho, Andrew D. | 1 |
Hong, Maxwell | 1 |
Kwok, Oi-man | 1 |
Longford, Nicholas T. | 1 |
More ▼ |
Publication Type
Journal Articles | 9 |
Reports - Research | 7 |
Reports - Evaluative | 2 |
Book/Product Reviews | 1 |
Education Level
Elementary Secondary Education | 2 |
Elementary Education | 1 |
Grade 4 | 1 |
Intermediate Grades | 1 |
Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 1 |
National Assessment of… | 1 |
National Longitudinal Study… | 1 |
Program for International… | 1 |
SAT (College Admission Test) | 1 |
Trends in International… | 1 |
What Works Clearinghouse Rating
Grund, Simon; Lüdtke, Oliver; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2023
Multiple imputation (MI) is a popular method for handling missing data. In education research, it can be challenging to use MI because the data often have a clustered structure that need to be accommodated during MI. Although much research has considered applications of MI in hierarchical data, little is known about its use in cross-classified…
Descriptors: Educational Research, Data Analysis, Error of Measurement, Computation
Hayes, Timothy – Journal of Educational and Behavioral Statistics, 2019
Multiple imputation is a popular method for addressing data that are presumed to be missing at random. To obtain accurate results, one's imputation model must be congenial to (appropriate for) one's intended analysis model. This article reviews and demonstrates two recent software packages, Blimp and jomo, to multiply impute data in a manner…
Descriptors: Computer Software Evaluation, Computer Software Reviews, Hierarchical Linear Modeling, Data Analysis
Patton, Jeffrey M.; Cheng, Ying; Hong, Maxwell; Diao, Qi – Journal of Educational and Behavioral Statistics, 2019
In psychological and survey research, the prevalence and serious consequences of careless responses from unmotivated participants are well known. In this study, we propose to iteratively detect careless responders and cleanse the data by removing their responses. The careless responders are detected using person-fit statistics. In two simulation…
Descriptors: Test Items, Response Style (Tests), Identification, Computation
Grund, Simon; Lüdtke, Oliver; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2021
Large-scale assessments (LSAs) use Mislevy's "plausible value" (PV) approach to relate student proficiency to noncognitive variables administered in a background questionnaire. This method requires background variables to be completely observed, a requirement that is seldom fulfilled. In this article, we evaluate and compare the…
Descriptors: Data Analysis, Error of Measurement, Research Problems, Statistical Inference
Reardon, Sean F.; Ho, Andrew D. – Journal of Educational and Behavioral Statistics, 2015
In an earlier paper, we presented methods for estimating achievement gaps when test scores are coarsened into a small number of ordered categories, preventing fine-grained distinctions between individual scores. We demonstrated that gaps can nonetheless be estimated with minimal bias across a broad range of simulated and real coarsened data…
Descriptors: Achievement Gap, Performance Factors, Educational Practices, Scores
Luo, Wen; Kwok, Oi-man – Journal of Educational and Behavioral Statistics, 2012
In longitudinal multilevel studies, especially in educational settings, it is fairly common that participants change their group memberships over time (e.g., students switch to different schools). Participant's mobility changes the multilevel data structure from a purely hierarchical structure with repeated measures nested within individuals and…
Descriptors: Mobility, Statistical Analysis, Models, Longitudinal Studies
Zhang, Jinming – Journal of Educational and Behavioral Statistics, 2012
The impact of uncertainty about item parameters on test information functions is investigated. The information function of a test is one of the most important tools in item response theory (IRT). Inaccuracy in the estimation of test information can have substantial consequences on data analyses based on IRT. In this article, the major part (called…
Descriptors: Item Response Theory, Tests, Accuracy, Data Analysis
Cao, Jing; Stokes, S. Lynne; Zhang, Song – Journal of Educational and Behavioral Statistics, 2010
We develop a Bayesian hierarchical model for the analysis of ordinal data from multirater ranking studies. The model for a rater's score includes four latent factors: one is a latent item trait determining the true order of items and the other three are the rater's performance characteristics, including bias, discrimination, and measurement error…
Descriptors: Bayesian Statistics, Data Analysis, Bias, Measurement
Longford, Nicholas T. – Journal of Educational and Behavioral Statistics, 2012
Statistical modeling of school effectiveness data was originally motivated by the dissatisfaction with the analysis of (school-leaving) examination results that took no account of the background of the students or regarded each school as an isolated unit of analysis. The application of multilevel analysis was generally regarded as a breakthrough,…
Descriptors: School Effectiveness, Data Analysis, Statistical Analysis, Statistical Studies