Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 5 |
Descriptor
Error of Measurement | 5 |
Markov Processes | 5 |
Computation | 3 |
Monte Carlo Methods | 3 |
Bayesian Statistics | 2 |
Item Response Theory | 2 |
Sampling | 2 |
Accuracy | 1 |
Adaptive Testing | 1 |
Algorithms | 1 |
Behavior | 1 |
More ▼ |
Source
Journal of Educational and… | 5 |
Author
Baram, Tallie Z. | 1 |
Bartolucci, Francesco | 1 |
Davis, Elysia Poggi | 1 |
Guo, Xiaojun | 1 |
Li, Yujun | 1 |
Liu, Yuming | 1 |
Luo, Guanzhong | 1 |
Luo, Zhaosheng | 1 |
Pennoni, Fulvia | 1 |
Ren, Hao | 1 |
Schulz, E. Matthew | 1 |
More ▼ |
Publication Type
Journal Articles | 5 |
Reports - Research | 3 |
Reports - Evaluative | 2 |
Education Level
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
Italy | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Iowa Tests of Basic Skills | 1 |
What Works Clearinghouse Rating
Shu, Tian; Luo, Guanzhong; Luo, Zhaosheng; Yu, Xiaofeng; Guo, Xiaojun; Li, Yujun – Journal of Educational and Behavioral Statistics, 2023
Cognitive diagnosis models (CDMs) are the statistical framework for cognitive diagnostic assessment in education and psychology. They generally assume that subjects' latent attributes are dichotomous--mastery or nonmastery, which seems quite deterministic. As an alternative to dichotomous attribute mastery, attention is drawn to the use of a…
Descriptors: Cognitive Measurement, Models, Diagnostic Tests, Accuracy
van der Linden, Wim J.; Ren, Hao – Journal of Educational and Behavioral Statistics, 2020
The Bayesian way of accounting for the effects of error in the ability and item parameters in adaptive testing is through the joint posterior distribution of all parameters. An optimized Markov chain Monte Carlo algorithm for adaptive testing is presented, which samples this distribution in real time to score the examinee's ability and optimally…
Descriptors: Bayesian Statistics, Adaptive Testing, Error of Measurement, Markov Processes
Vegetabile, Brian G.; Stout-Oswald, Stephanie A.; Davis, Elysia Poggi; Baram, Tallie Z.; Stern, Hal S. – Journal of Educational and Behavioral Statistics, 2019
Predictability of behavior is an important characteristic in many fields including biology, medicine, marketing, and education. When a sequence of actions performed by an individual can be modeled as a stationary time-homogeneous Markov chain the predictability of the individual's behavior can be quantified by the entropy rate of the process. This…
Descriptors: Markov Processes, Prediction, Behavior, Computation
Bartolucci, Francesco; Pennoni, Fulvia; Vittadini, Giorgio – Journal of Educational and Behavioral Statistics, 2016
We extend to the longitudinal setting a latent class approach that was recently introduced by Lanza, Coffman, and Xu to estimate the causal effect of a treatment. The proposed approach enables an evaluation of multiple treatment effects on subpopulations of individuals from a dynamic perspective, as it relies on a latent Markov (LM) model that is…
Descriptors: Causal Models, Markov Processes, Longitudinal Studies, Probability
Liu, Yuming; Schulz, E. Matthew; Yu, Lei – Journal of Educational and Behavioral Statistics, 2008
A Markov chain Monte Carlo (MCMC) method and a bootstrap method were compared in the estimation of standard errors of item response theory (IRT) true score equating. Three test form relationships were examined: parallel, tau-equivalent, and congeneric. Data were simulated based on Reading Comprehension and Vocabulary tests of the Iowa Tests of…
Descriptors: Reading Comprehension, Test Format, Markov Processes, Educational Testing