NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jochen Ranger; Christoph König; Benjamin W. Domingue; Jörg-Tobias Kuhn; Andreas Frey – Journal of Educational and Behavioral Statistics, 2024
In the existing multidimensional extensions of the log-normal response time (LNRT) model, the log response times are decomposed into a linear combination of several latent traits. These models are fully compensatory as low levels on traits can be counterbalanced by high levels on other traits. We propose an alternative multidimensional extension…
Descriptors: Models, Statistical Distributions, Item Response Theory, Response Rates (Questionnaires)
Peer reviewed Peer reviewed
Direct linkDirect link
Dai, Shenghai; Svetina, Dubravka; Wang, Xiaolin – Journal of Educational and Behavioral Statistics, 2017
There is an increasing interest in reporting test subscores for diagnostic purposes. In this article, we review nine popular R packages (subscore, mirt, TAM, sirt, CDM, NPCD, lavaan, sem, and OpenMX) that are capable of implementing subscore-reporting methods within one or more frameworks including classical test theory, multidimensional item…
Descriptors: Diagnostic Tests, Scores, Computer Software, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Yanlou; Tian, Wei; Xin, Tao – Journal of Educational and Behavioral Statistics, 2016
The fit of cognitive diagnostic models (CDMs) to response data needs to be evaluated, since CDMs might yield misleading results when they do not fit the data well. Limited-information statistic M[subscript 2] and the associated root mean square error of approximation (RMSEA[subscript 2]) in item factor analysis were extended to evaluate the fit of…
Descriptors: Cognitive Measurement, Models, Statistics, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Stapleton, Laura M.; Yang, Ji Seung; Hancock, Gregory R. – Journal of Educational and Behavioral Statistics, 2016
We present types of constructs, individual- and cluster-level, and their confirmatory factor analytic validation models when data are from individuals nested within clusters. When a construct is theoretically individual level, spurious construct-irrelevant dependency in the data may appear to signal cluster-level dependency; in such cases,…
Descriptors: Multivariate Analysis, Factor Analysis, Validity, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Camilli, Gregory; Fox, Jean-Paul – Journal of Educational and Behavioral Statistics, 2015
An aggregation strategy is proposed to potentially address practical limitation related to computing resources for two-level multidimensional item response theory (MIRT) models with large data sets. The aggregate model is derived by integration of the normal ogive model, and an adaptation of the stochastic approximation expectation maximization…
Descriptors: Factor Analysis, Item Response Theory, Grade 4, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Koch, Tobias; Schultze, Martin; Burrus, Jeremy; Roberts, Richard D.; Eid, Michael – Journal of Educational and Behavioral Statistics, 2015
The numerous advantages of structural equation modeling (SEM) for the analysis of multitrait-multimethod (MTMM) data are well known. MTMM-SEMs allow researchers to explicitly model the measurement error, to examine the true convergent and discriminant validity of the given measures, and to relate external variables to the latent trait as well as…
Descriptors: Structural Equation Models, Hierarchical Linear Modeling, Factor Analysis, Multitrait Multimethod Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Wainer, Howard – Journal of Educational and Behavioral Statistics, 2011
This article presents an interview with Karl Gustav Joreskog. Karl Gustav Joreskog was born in Amal, Sweden, on April 25, 1935. He did his undergraduate studies at Uppsala University from 1955 to 1957, with a major in mathematics and physics. He received a PhD in statistics at Uppsala University in 1963, and he was a research statistician at…
Descriptors: Statistics, Structural Equation Models, Computer Software, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Ranger, Jochen; Kuhn, Jorg-Tobias – Journal of Educational and Behavioral Statistics, 2013
It is common practice to log-transform response times before analyzing them with standard factor analytical methods. However, sometimes the log-transformation is not capable of linearizing the relation between the response times and the latent traits. Therefore, a more general approach to response time analysis is proposed in the current…
Descriptors: Item Response Theory, Simulation, Reaction Time, Least Squares Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Wainer, Howard – Journal of Educational and Behavioral Statistics, 2010
In this essay, the author tries to look forward into the 21st century to divine three things: (i) What skills will researchers in the future need to solve the most pressing problems? (ii) What are some of the most likely candidates to be those problems? and (iii) What are some current areas of research that seem mined out and should not distract…
Descriptors: Research Skills, Researchers, Internet, Access to Information
Peer reviewed Peer reviewed
Direct linkDirect link
Goldstein, Harvey; Bonnet, Gerard; Rocher, Thierry – Journal of Educational and Behavioral Statistics, 2007
The Programme for International Student Assessment comparative study of reading performance among 15-year-olds is reanalyzed using statistical procedures that allow the full complexity of the data structures to be explored. The article extends existing multilevel factor analysis and structural equation models and shows how this can extract richer…
Descriptors: Foreign Countries, Structural Equation Models, Markov Processes, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Miyazaki, Yasuo; Frank, Kenneth A. – Journal of Educational and Behavioral Statistics, 2006
In this article the authors develop a model that employs a factor analysis structure at Level 2 of a two-level hierarchical linear model (HLM). The model (HLM2F) imposes a structure on a deficient rank Level 2 covariance matrix [tau], and facilitates estimation of a relatively large [tau] matrix. Maximum likelihood estimators are derived via the…
Descriptors: Methods, Factor Analysis, Computation, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Sik-Yum; Song, Xin-Yuan; Lee, John C. K. – Journal of Educational and Behavioral Statistics, 2003
The existing maximum likelihood theory and its computer software in structural equation modeling are established on the basis of linear relationships among latent variables with fully observed data. However, in social and behavioral sciences, nonlinear relationships among the latent variables are important for establishing more meaningful models…
Descriptors: Structural Equation Models, Simulation, Computer Software, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Segawa, Eisuke – Journal of Educational and Behavioral Statistics, 2005
Multi-indicator growth models were formulated as special three-level hierarchical generalized linear models to analyze growth of a trait latent variable measured by ordinal items. Items are nested within a time-point, and time-points are nested within subject. These models are special because they include factor analytic structure. This model can…
Descriptors: Bayesian Statistics, Mathematical Models, Factor Analysis, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Bauer, Daniel J. – Journal of Educational and Behavioral Statistics, 2003
Multilevel linear models (MLMs) provide a powerful framework for analyzing data collected at nested or non-nested levels, such as students within classrooms. The current article draws on recent analytical and software advances to demonstrate that a broad class of MLMs may be estimated as structural equation models (SEMs). Moreover, within the SEM…
Descriptors: Structural Equation Models, Data Analysis, Computer Software, Evaluation Methods