NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hasegawa, Raiden B.; Deshpande, Sameer K.; Small, Dylan S.; Rosenbaum, Paul R. – Journal of Educational and Behavioral Statistics, 2020
Causal effects are commonly defined as comparisons of the potential outcomes under treatment and control, but this definition is threatened by the possibility that either the treatment or the control condition is not well defined, existing instead in more than one version. This is often a real possibility in nonexperimental or observational…
Descriptors: Causal Models, Inferences, Randomized Controlled Trials, Experimental Groups
Peer reviewed Peer reviewed
Direct linkDirect link
Wainer, Howard – Journal of Educational and Behavioral Statistics, 2010
In this essay, the author tries to look forward into the 21st century to divine three things: (i) What skills will researchers in the future need to solve the most pressing problems? (ii) What are some of the most likely candidates to be those problems? and (iii) What are some current areas of research that seem mined out and should not distract…
Descriptors: Research Skills, Researchers, Internet, Access to Information
Peer reviewed Peer reviewed
Direct linkDirect link
Hong, Guanglei; Raudenbush, Stephen W. – Journal of Educational and Behavioral Statistics, 2008
The authors propose a strategy for studying the effects of time-varying instructional treatments on repeatedly observed student achievement. This approach responds to three challenges: (a) The yearly reallocation of students to classrooms and teachers creates a complex structure of dependence among responses; (b) a child's learning outcome under a…
Descriptors: Elementary School Mathematics, Grade 4, Probability, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Briggs, Derek C. – Journal of Educational and Behavioral Statistics, 2004
In the social sciences, evaluating the effectiveness of a program or intervention often leads researchers to draw causal inferences from observational research designs. Bias in estimated causal effects becomes an obvious problem in such settings. This article presents the Heckman Model as an approach sometimes applied to observational data for the…
Descriptors: Social Science Research, Statistical Inference, Causal Models, Test Bias