Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 5 |
Descriptor
Source
Journal of Educational and… | 6 |
Author
Andreas Kurz | 1 |
Andrew Gelman | 1 |
Can Gürer | 1 |
Clemens Draxler | 1 |
Daniel Lee | 1 |
Frank, Kenneth A. | 1 |
Grilli, Leonardo | 1 |
Hong, Guanglei | 1 |
Jan Philipp Nolte | 1 |
Jiqiang Guo | 1 |
Mealli, Fabrizia | 1 |
More ▼ |
Publication Type
Journal Articles | 6 |
Reports - Research | 4 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Education Level
Elementary Education | 1 |
Grade 4 | 1 |
Grade 5 | 1 |
Higher Education | 1 |
Audience
Location
Italy | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Clemens Draxler; Andreas Kurz; Can Gürer; Jan Philipp Nolte – Journal of Educational and Behavioral Statistics, 2024
A modified and improved inductive inferential approach to evaluate item discriminations in a conditional maximum likelihood and Rasch modeling framework is suggested. The new approach involves the derivation of four hypothesis tests. It implies a linear restriction of the assumed set of probability distributions in the classical approach that…
Descriptors: Inferences, Test Items, Item Analysis, Maximum Likelihood Statistics
Monroe, Scott – Journal of Educational and Behavioral Statistics, 2019
In item response theory (IRT) modeling, the Fisher information matrix is used for numerous inferential procedures such as estimating parameter standard errors, constructing test statistics, and facilitating test scoring. In principal, these procedures may be carried out using either the expected information or the observed information. However, in…
Descriptors: Item Response Theory, Error of Measurement, Scoring, Inferences
Andrew Gelman; Daniel Lee; Jiqiang Guo – Journal of Educational and Behavioral Statistics, 2015
Stan is a free and open-source C++ program that performs Bayesian inference or optimization for arbitrary user-specified models and can be called from the command line, R, Python, Matlab, or Julia and has great promise for fitting large and complex statistical models in many areas of application. We discuss Stan from users' and developers'…
Descriptors: Programming Languages, Bayesian Statistics, Inferences, Monte Carlo Methods
Grilli, Leonardo; Mealli, Fabrizia – Journal of Educational and Behavioral Statistics, 2008
The authors propose a methodology based on the principal strata approach to causal inference for assessing the relative effectiveness of two degree programs with respect to the employment status of their graduates. An innovative use of nonparametric bounds in the principal strata framework is shown, examining the role of some assumptions in…
Descriptors: Political Science, Employment Level, Outcomes of Education, Nonparametric Statistics
Pan, Wei; Frank, Kenneth A. – Journal of Educational and Behavioral Statistics, 2003
Causal inference is an important, controversial topic in the social sciences, where it is difficult to conduct experiments or measure and control for all confounding variables. To address this concern, the present study presents a probability index to assess the robustness of a causal inference to the impact of a confounding variable. The…
Descriptors: Research Methodology, Educational Attainment, Social Sciences, Program Effectiveness
Hong, Guanglei; Raudenbush, Stephen W. – Journal of Educational and Behavioral Statistics, 2008
The authors propose a strategy for studying the effects of time-varying instructional treatments on repeatedly observed student achievement. This approach responds to three challenges: (a) The yearly reallocation of students to classrooms and teachers creates a complex structure of dependence among responses; (b) a child's learning outcome under a…
Descriptors: Elementary School Mathematics, Grade 4, Probability, Teaching Methods