NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 19 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Wim J. van der Linden; Luping Niu; Seung W. Choi – Journal of Educational and Behavioral Statistics, 2024
A test battery with two different levels of adaptation is presented: a within-subtest level for the selection of the items in the subtests and a between-subtest level to move from one subtest to the next. The battery runs on a two-level model consisting of a regular response model for each of the subtests extended with a second level for the joint…
Descriptors: Adaptive Testing, Test Construction, Test Format, Test Reliability
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Shiyu; Xiao, Houping; Cohen, Allan – Journal of Educational and Behavioral Statistics, 2021
An adaptive weight estimation approach is proposed to provide robust latent ability estimation in computerized adaptive testing (CAT) with response revision. This approach assigns different weights to each distinct response to the same item when response revision is allowed in CAT. Two types of weight estimation procedures, nonfunctional and…
Descriptors: Computer Assisted Testing, Adaptive Testing, Computation, Robustness (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Yu, Albert; Douglas, Jeffrey A. – Journal of Educational and Behavioral Statistics, 2023
We propose a new item response theory growth model with item-specific learning parameters, or ISLP, and two variations of this model. In the ISLP model, either items or blocks of items have their own learning parameters. This model may be used to improve the efficiency of learning in a formative assessment. We show ways that the ISLP model's…
Descriptors: Item Response Theory, Learning, Markov Processes, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Kang, Hyeon-Ah; Zheng, Yi; Chang, Hua-Hua – Journal of Educational and Behavioral Statistics, 2020
With the widespread use of computers in modern assessment, online calibration has become increasingly popular as a way of replenishing an item pool. The present study discusses online calibration strategies for a joint model of responses and response times. The study proposes likelihood inference methods for item paramter estimation and evaluates…
Descriptors: Adaptive Testing, Computer Assisted Testing, Item Response Theory, Reaction Time
Peer reviewed Peer reviewed
Direct linkDirect link
van der Linden, Wim J.; Ren, Hao – Journal of Educational and Behavioral Statistics, 2020
The Bayesian way of accounting for the effects of error in the ability and item parameters in adaptive testing is through the joint posterior distribution of all parameters. An optimized Markov chain Monte Carlo algorithm for adaptive testing is presented, which samples this distribution in real time to score the examinee's ability and optimally…
Descriptors: Bayesian Statistics, Adaptive Testing, Error of Measurement, Markov Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Jewsbury, Paul A.; van Rijn, Peter W. – Journal of Educational and Behavioral Statistics, 2020
In large-scale educational assessment data consistent with a simple-structure multidimensional item response theory (MIRT) model, where every item measures only one latent variable, separate unidimensional item response theory (UIRT) models for each latent variable are often calibrated for practical reasons. While this approach can be valid for…
Descriptors: Item Response Theory, Computation, Test Items, Adaptive Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Sinharay, Sandip – Journal of Educational and Behavioral Statistics, 2016
Meijer and van Krimpen-Stoop noted that the number of person-fit statistics (PFSs) that have been designed for computerized adaptive tests (CATs) is relatively modest. This article partially addresses that concern by suggesting three new PFSs for CATs. The statistics are based on tests for a change point and can be used to detect an abrupt change…
Descriptors: Computer Assisted Testing, Adaptive Testing, Item Response Theory, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Chen, Ping – Journal of Educational and Behavioral Statistics, 2017
Calibration of new items online has been an important topic in item replenishment for multidimensional computerized adaptive testing (MCAT). Several online calibration methods have been proposed for MCAT, such as multidimensional "one expectation-maximization (EM) cycle" (M-OEM) and multidimensional "multiple EM cycles"…
Descriptors: Test Items, Item Response Theory, Test Construction, Adaptive Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Nydick, Steven W. – Journal of Educational and Behavioral Statistics, 2014
The sequential probability ratio test (SPRT) is a common method for terminating item response theory (IRT)-based adaptive classification tests. To decide whether a classification test should stop, the SPRT compares a simple log-likelihood ratio, based on the classification bound separating two categories, to prespecified critical values. As has…
Descriptors: Probability, Item Response Theory, Models, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Thissen, David – Journal of Educational and Behavioral Statistics, 2016
David Thissen, a professor in the Department of Psychology and Neuroscience, Quantitative Program at the University of North Carolina, has consulted and served on technical advisory committees for assessment programs that use item response theory (IRT) over the past couple decades. He has come to the conclusion that there are usually two purposes…
Descriptors: Item Response Theory, Test Construction, Testing Problems, Student Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Chun – Journal of Educational and Behavioral Statistics, 2014
Many latent traits in social sciences display a hierarchical structure, such as intelligence, cognitive ability, or personality. Usually a second-order factor is linearly related to a group of first-order factors (also called domain abilities in cognitive ability measures), and the first-order factors directly govern the actual item responses.…
Descriptors: Measurement, Accuracy, Item Response Theory, Adaptive Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Fan, Zhewen; Wang, Chun; Chang, Hua-Hua; Douglas, Jeffrey – Journal of Educational and Behavioral Statistics, 2012
Traditional methods for item selection in computerized adaptive testing only focus on item information without taking into consideration the time required to answer an item. As a result, some examinees may receive a set of items that take a very long time to finish, and information is not accrued as efficiently as possible. The authors propose two…
Descriptors: Computer Assisted Testing, Adaptive Testing, Test Items, Item Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Finkelman, Matthew – Journal of Educational and Behavioral Statistics, 2008
Sequential mastery testing (SMT) has been researched as an efficient alternative to paper-and-pencil testing for pass/fail examinations. One popular method for determining when to cease examination in SMT is the truncated sequential probability ratio test (TSPRT). This article introduces the application of stochastic curtailment in SMT to shorten…
Descriptors: Mastery Tests, Sequential Approach, Computer Assisted Testing, Adaptive Testing
Peer reviewed Peer reviewed
Direct linkDirect link
van der Linden, Wim J. – Journal of Educational and Behavioral Statistics, 2008
Response times on items can be used to improve item selection in adaptive testing provided that a probabilistic model for their distribution is available. In this research, the author used a hierarchical modeling framework with separate first-level models for the responses and response times and a second-level model for the distribution of the…
Descriptors: Reaction Time, Law Schools, Adaptive Testing, Item Analysis
Peer reviewed Peer reviewed
Bradlow, Eric T. – Journal of Educational and Behavioral Statistics, 1996
The three-parameter logistic (3-PL) model is described and a derivation of the 3-PL observed information function is presented for a single binary response from one examinee with known item parameters. Formulas are presented for the probability of negative information and for the expected information (always nonnegative). (SLD)
Descriptors: Ability, Adaptive Testing, Computer Assisted Testing, Item Response Theory
Previous Page | Next Page ยป
Pages: 1  |  2