NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Nguyen, Trang Quynh; Stuart, Elizabeth A. – Journal of Educational and Behavioral Statistics, 2020
We address measurement error bias in propensity score (PS) analysis due to covariates that are latent variables. In the setting where latent covariate X is measured via multiple error-prone items W, PS analysis using several proxies for X--the W items themselves, a summary score (mean/sum of the items), or the conventional factor score (i.e.,…
Descriptors: Error of Measurement, Statistical Bias, Error Correction, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Keller, Bryan; Tipton, Elizabeth – Journal of Educational and Behavioral Statistics, 2016
In this article, we review four software packages for implementing propensity score analysis in R: "Matching, MatchIt, PSAgraphics," and "twang." After briefly discussing essential elements for propensity score analysis, we apply each package to a data set from the Early Childhood Longitudinal Study in order to estimate the…
Descriptors: Computer Software, Probability, Statistical Analysis, Longitudinal Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Bartolucci, Francesco; Pennoni, Fulvia; Vittadini, Giorgio – Journal of Educational and Behavioral Statistics, 2016
We extend to the longitudinal setting a latent class approach that was recently introduced by Lanza, Coffman, and Xu to estimate the causal effect of a treatment. The proposed approach enables an evaluation of multiple treatment effects on subpopulations of individuals from a dynamic perspective, as it relies on a latent Markov (LM) model that is…
Descriptors: Causal Models, Markov Processes, Longitudinal Studies, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Feldman, Betsy J.; Rabe-Hesketh, Sophia – Journal of Educational and Behavioral Statistics, 2012
In longitudinal education studies, assuming that dropout and missing data occur completely at random is often unrealistic. When the probability of dropout depends on covariates and observed responses (called "missing at random" [MAR]), or on values of responses that are missing (called "informative" or "not missing at random" [NMAR]),…
Descriptors: Dropouts, Academic Achievement, Longitudinal Studies, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Hong, Guanglei; Raudenbush, Stephen W. – Journal of Educational and Behavioral Statistics, 2008
The authors propose a strategy for studying the effects of time-varying instructional treatments on repeatedly observed student achievement. This approach responds to three challenges: (a) The yearly reallocation of students to classrooms and teachers creates a complex structure of dependence among responses; (b) a child's learning outcome under a…
Descriptors: Elementary School Mathematics, Grade 4, Probability, Teaching Methods