NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Bartolucci, Francesco; Pennoni, Fulvia; Vittadini, Giorgio – Journal of Educational and Behavioral Statistics, 2023
In order to evaluate the effect of a policy or treatment with pre- and post-treatment outcomes, we propose an approach based on a transition model, which may be applied with multivariate outcomes and accounts for unobserved heterogeneity. This model is based on potential versions of discrete latent variables representing the individual…
Descriptors: Causal Models, Multivariate Analysis, Markov Processes, Human Capital
Peer reviewed Peer reviewed
Direct linkDirect link
Yamaguchi, Kazuhiro – Journal of Educational and Behavioral Statistics, 2023
Understanding whether or not different types of students master various attributes can aid future learning remediation. In this study, two-level diagnostic classification models (DCMs) were developed to represent the probabilistic relationship between external latent classes and attribute mastery patterns. Furthermore, variational Bayesian (VB)…
Descriptors: Bayesian Statistics, Classification, Statistical Inference, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Vegetabile, Brian G.; Stout-Oswald, Stephanie A.; Davis, Elysia Poggi; Baram, Tallie Z.; Stern, Hal S. – Journal of Educational and Behavioral Statistics, 2019
Predictability of behavior is an important characteristic in many fields including biology, medicine, marketing, and education. When a sequence of actions performed by an individual can be modeled as a stationary time-homogeneous Markov chain the predictability of the individual's behavior can be quantified by the entropy rate of the process. This…
Descriptors: Markov Processes, Prediction, Behavior, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Depaoli, Sarah; Clifton, James P.; Cobb, Patrice R. – Journal of Educational and Behavioral Statistics, 2016
A review of the software Just Another Gibbs Sampler (JAGS) is provided. We cover aspects related to history and development and the elements a user needs to know to get started with the program, including (a) definition of the data, (b) definition of the model, (c) compilation of the model, and (d) initialization of the model. An example using a…
Descriptors: Monte Carlo Methods, Markov Processes, Computer Software, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Fox, J.-P.; Wyrick, Cheryl – Journal of Educational and Behavioral Statistics, 2008
The randomized response technique ensures that individual item responses, denoted as true item responses, are randomized before observing them and so-called randomized item responses are observed. A relationship is specified between randomized item response data and true item response data. True item response data are modeled with a (non)linear…
Descriptors: Item Response Theory, Models, Markov Processes, Monte Carlo Methods
Peer reviewed Peer reviewed
Draper, David – Journal of Educational and Behavioral Statistics, 1995
The use of hierarchical models in social science research is discussed, with emphasis on causal inference and consideration of the limitations of hierarchical models. The increased use of Gibbs sampling and other Markov-chain Monte Carlo methods in the application of hierarchical models is recommended. (SLD)
Descriptors: Causal Models, Comparative Analysis, Markov Processes, Maximum Likelihood Statistics