Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 7 |
Since 2016 (last 10 years) | 13 |
Since 2006 (last 20 years) | 23 |
Descriptor
Source
Journal of Educational and… | 29 |
Author
Publication Type
Journal Articles | 29 |
Reports - Research | 18 |
Reports - Evaluative | 6 |
Reports - Descriptive | 5 |
Education Level
Higher Education | 4 |
Elementary Education | 2 |
Elementary Secondary Education | 2 |
Grade 4 | 2 |
Postsecondary Education | 2 |
Grade 1 | 1 |
Grade 5 | 1 |
Audience
Location
Belgium | 1 |
Italy | 1 |
Netherlands | 1 |
Netherlands (Amsterdam) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
National Assessment of… | 2 |
Trends in International… | 1 |
What Works Clearinghouse Rating
San Martín, Ernesto; González, Jorge – Journal of Educational and Behavioral Statistics, 2022
The nonequivalent groups with anchor test (NEAT) design is widely used in test equating. Under this design, two groups of examinees are administered different test forms with each test form containing a subset of common items. Because test takers from different groups are assigned only one test form, missing score data emerge by design rendering…
Descriptors: Tests, Scores, Statistical Analysis, Models
Liang, Qianru; de la Torre, Jimmy; Law, Nancy – Journal of Educational and Behavioral Statistics, 2023
To expand the use of cognitive diagnosis models (CDMs) to longitudinal assessments, this study proposes a bias-corrected three-step estimation approach for latent transition CDMs with covariates by integrating a general CDM and a latent transition model. The proposed method can be used to assess changes in attribute mastery status and attribute…
Descriptors: Cognitive Measurement, Models, Statistical Bias, Computation
Wallin, Gabriel; Wiberg, Marie – Journal of Educational and Behavioral Statistics, 2023
This study explores the usefulness of covariates on equating test scores from nonequivalent test groups. The covariates are captured by an estimated propensity score, which is used as a proxy for latent ability to balance the test groups. The objective is to assess the sensitivity of the equated scores to various misspecifications in the…
Descriptors: Models, Error of Measurement, Robustness (Statistics), Equated Scores
The Reliability of the Posterior Probability of Skill Attainment in Diagnostic Classification Models
Johnson, Matthew S.; Sinharay, Sandip – Journal of Educational and Behavioral Statistics, 2020
One common score reported from diagnostic classification assessments is the vector of posterior means of the skill mastery indicators. As with any assessment, it is important to derive and report estimates of the reliability of the reported scores. After reviewing a reliability measure suggested by Templin and Bradshaw, this article suggests three…
Descriptors: Reliability, Probability, Skill Development, Classification
Kuijpers, Renske E.; Visser, Ingmar; Molenaar, Dylan – Journal of Educational and Behavioral Statistics, 2021
Mixture models have been developed to enable detection of within-subject differences in responses and response times to psychometric test items. To enable mixture modeling of both responses and response times, a distributional assumption is needed for the within-state response time distribution. Since violations of the assumed response time…
Descriptors: Test Items, Responses, Reaction Time, Models
Lubbe, Dirk; Schuster, Christof – Journal of Educational and Behavioral Statistics, 2020
Extreme response style is the tendency of individuals to prefer the extreme categories of a rating scale irrespective of item content. It has been shown repeatedly that individual response style differences affect the reliability and validity of item responses and should, therefore, be considered carefully. To account for extreme response style…
Descriptors: Response Style (Tests), Rating Scales, Item Response Theory, Models
Hung, Su-Pin; Huang, Hung-Yu – Journal of Educational and Behavioral Statistics, 2022
To address response style or bias in rating scales, forced-choice items are often used to request that respondents rank their attitudes or preferences among a limited set of options. The rating scales used by raters to render judgments on ratees' performance also contribute to rater bias or errors; consequently, forced-choice items have recently…
Descriptors: Evaluation Methods, Rating Scales, Item Analysis, Preferences
Pang, Bo; Nijkamp, Erik; Wu, Ying Nian – Journal of Educational and Behavioral Statistics, 2020
This review covers the core concepts and design decisions of TensorFlow. TensorFlow, originally created by researchers at Google, is the most popular one among the plethora of deep learning libraries. In the field of deep learning, neural networks have achieved tremendous success and gained wide popularity in various areas. This family of models…
Descriptors: Artificial Intelligence, Regression (Statistics), Models, Classification
Lyu, Weicong; Kim, Jee-Seon; Suk, Youmi – Journal of Educational and Behavioral Statistics, 2023
This article presents a latent class model for multilevel data to identify latent subgroups and estimate heterogeneous treatment effects. Unlike sequential approaches that partition data first and then estimate average treatment effects (ATEs) within classes, we employ a Bayesian procedure to jointly estimate mixing probability, selection, and…
Descriptors: Hierarchical Linear Modeling, Bayesian Statistics, Causal Models, Statistical Inference
Li, Xiao; Xu, Hanchen; Zhang, Jinming; Chang, Hua-hua – Journal of Educational and Behavioral Statistics, 2023
The adaptive learning problem concerns how to create an individualized learning plan (also referred to as a learning policy) that chooses the most appropriate learning materials based on a learner's latent traits. In this article, we study an important yet less-addressed adaptive learning problem--one that assumes continuous latent traits.…
Descriptors: Learning Processes, Models, Algorithms, Individualized Instruction
Monroe, Scott – Journal of Educational and Behavioral Statistics, 2019
In item response theory (IRT) modeling, the Fisher information matrix is used for numerous inferential procedures such as estimating parameter standard errors, constructing test statistics, and facilitating test scoring. In principal, these procedures may be carried out using either the expected information or the observed information. However, in…
Descriptors: Item Response Theory, Error of Measurement, Scoring, Inferences
Lu, Jiannan; Ding, Peng; Dasgupta, Tirthankar – Journal of Educational and Behavioral Statistics, 2018
Assessing the causal effects of interventions on ordinal outcomes is an important objective of many educational and behavioral studies. Under the potential outcomes framework, we can define causal effects as comparisons between the potential outcomes under treatment and control. However, unfortunately, the average causal effect, often the…
Descriptors: Outcomes of Treatment, Mathematical Applications, Probability, Behavioral Science Research
Sweet, Tracy M. – Journal of Educational and Behavioral Statistics, 2015
Social networks in education commonly involve some form of grouping, such as friendship cliques or teacher departments, and blockmodels are a type of statistical social network model that accommodate these grouping or blocks by assuming different within-group tie probabilities than between-group tie probabilities. We describe a class of models,…
Descriptors: Social Networks, Statistical Analysis, Probability, Models
Nydick, Steven W. – Journal of Educational and Behavioral Statistics, 2014
The sequential probability ratio test (SPRT) is a common method for terminating item response theory (IRT)-based adaptive classification tests. To decide whether a classification test should stop, the SPRT compares a simple log-likelihood ratio, based on the classification bound separating two categories, to prespecified critical values. As has…
Descriptors: Probability, Item Response Theory, Models, Classification
Bartolucci, Francesco; Pennoni, Fulvia; Vittadini, Giorgio – Journal of Educational and Behavioral Statistics, 2016
We extend to the longitudinal setting a latent class approach that was recently introduced by Lanza, Coffman, and Xu to estimate the causal effect of a treatment. The proposed approach enables an evaluation of multiple treatment effects on subpopulations of individuals from a dynamic perspective, as it relies on a latent Markov (LM) model that is…
Descriptors: Causal Models, Markov Processes, Longitudinal Studies, Probability
Previous Page | Next Page »
Pages: 1 | 2