Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 8 |
Descriptor
Source
Journal of Educational and… | 8 |
Author
Aseltine, Robert H., Jr. | 1 |
Azen, Razia | 1 |
Castellano, Katherine E. | 1 |
Chung, Yeojin | 1 |
Dorie, Vincent | 1 |
Furno, Marilena | 1 |
Gelman, Andrew | 1 |
Hansen, Ben B. | 1 |
Harel, Ofer | 1 |
Liu, Jingchen | 1 |
Lockwood, J. R. | 1 |
More ▼ |
Publication Type
Journal Articles | 8 |
Reports - Research | 5 |
Reports - Evaluative | 2 |
Reports - Descriptive | 1 |
Education Level
Secondary Education | 2 |
Elementary Education | 1 |
Grade 8 | 1 |
High Schools | 1 |
Higher Education | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Postsecondary Education | 1 |
Audience
Location
Canada | 1 |
Italy | 1 |
Massachusetts | 1 |
Puerto Rico | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Center for Epidemiologic… | 1 |
Early Childhood Longitudinal… | 1 |
Program for International… | 1 |
What Works Clearinghouse Rating
Sinharay, Sandip – Journal of Educational and Behavioral Statistics, 2022
Takers of educational tests often receive proficiency levels instead of or in addition to scaled scores. For example, proficiency levels are reported for the Advanced Placement (APĀ®) and U.S. Medical Licensing examinations. Technical difficulties and other unforeseen events occasionally lead to missing item scores and hence to incomplete data on…
Descriptors: Computation, Data Analysis, Educational Testing, Accuracy
Youmi Suk – Journal of Educational and Behavioral Statistics, 2024
Machine learning (ML) methods for causal inference have gained popularity due to their flexibility to predict the outcome model and the propensity score. In this article, we provide a within-group approach for ML-based causal inference methods in order to robustly estimate average treatment effects in multilevel studies when there is cluster-level…
Descriptors: Artificial Intelligence, Causal Models, Statistical Inference, Maximum Likelihood Statistics
Sales, Adam C.; Hansen, Ben B. – Journal of Educational and Behavioral Statistics, 2020
Conventionally, regression discontinuity analysis contrasts a univariate regression's limits as its independent variable, "R," approaches a cut point, "c," from either side. Alternative methods target the average treatment effect in a small region around "c," at the cost of an assumption that treatment assignment,…
Descriptors: Regression (Statistics), Computation, Statistical Inference, Robustness (Statistics)
Lockwood, J. R.; Castellano, Katherine E.; Shear, Benjamin R. – Journal of Educational and Behavioral Statistics, 2018
This article proposes a flexible extension of the Fay--Herriot model for making inferences from coarsened, group-level achievement data, for example, school-level data consisting of numbers of students falling into various ordinal performance categories. The model builds on the heteroskedastic ordered probit (HETOP) framework advocated by Reardon,…
Descriptors: Bayesian Statistics, Mathematical Models, Statistical Inference, Computation
Chung, Yeojin; Gelman, Andrew; Rabe-Hesketh, Sophia; Liu, Jingchen; Dorie, Vincent – Journal of Educational and Behavioral Statistics, 2015
When fitting hierarchical regression models, maximum likelihood (ML) estimation has computational (and, for some users, philosophical) advantages compared to full Bayesian inference, but when the number of groups is small, estimates of the covariance matrix (S) of group-level varying coefficients are often degenerate. One can do better, even from…
Descriptors: Regression (Statistics), Hierarchical Linear Modeling, Bayesian Statistics, Statistical Inference
Yan, Jun; Aseltine, Robert H., Jr.; Harel, Ofer – Journal of Educational and Behavioral Statistics, 2013
Comparing regression coefficients between models when one model is nested within another is of great practical interest when two explanations of a given phenomenon are specified as linear models. The statistical problem is whether the coefficients associated with a given set of covariates change significantly when other covariates are added into…
Descriptors: Computation, Regression (Statistics), Comparative Analysis, Models
Furno, Marilena – Journal of Educational and Behavioral Statistics, 2011
The article considers a test of specification for quantile regressions. The test relies on the increase of the objective function and the worsening of the fit when unnecessary constraints are imposed. It compares the objective functions of restricted and unrestricted models and, in its different formulations, it verifies (a) forecast ability, (b)…
Descriptors: Goodness of Fit, Statistical Inference, Regression (Statistics), Least Squares Statistics
Azen, Razia; Traxel, Nicole – Journal of Educational and Behavioral Statistics, 2009
This article proposes an extension of dominance analysis that allows researchers to determine the relative importance of predictors in logistic regression models. Criteria for choosing logistic regression R[superscript 2] analogues were determined and measures were selected that can be used to perform dominance analysis in logistic regression. A…
Descriptors: Regression (Statistics), Predictor Variables, Measurement, Simulation