NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Shen, Zuchao; Kelcey, Benjamin – Journal of Educational and Behavioral Statistics, 2020
Conventional optimal design frameworks consider a narrow range of sampling cost structures that thereby constrict their capacity to identify the most powerful and efficient designs. We relax several constraints of previous optimal design frameworks by allowing for variable sampling costs in cluster-randomized trials. The proposed framework…
Descriptors: Sampling, Research Design, Randomized Controlled Trials, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Chan, Wendy – Journal of Educational and Behavioral Statistics, 2018
Policymakers have grown increasingly interested in how experimental results may generalize to a larger population. However, recently developed propensity score-based methods are limited by small sample sizes, where the experimental study is generalized to a population that is at least 20 times larger. This is particularly problematic for methods…
Descriptors: Computation, Generalization, Probability, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Jia, Yue; Stokes, Lynne; Harris, Ian; Wang, Yan – Journal of Educational and Behavioral Statistics, 2011
In this article, we consider estimation of parameters of random effects models from samples collected via complex multistage designs. Incorporation of sampling weights is one way to reduce estimation bias due to unequal probabilities of selection. Several weighting methods have been proposed in the literature for estimating the parameters of…
Descriptors: Sampling, Computation, Statistical Bias, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Moerbeek, Mirjam – Journal of Educational and Behavioral Statistics, 2008
Three issues need to be decided in the design stage of a longitudinal intervention study: the number of persons, the number of repeated measurements per person, and the duration of the study. The degree to which polynomial effects vary across persons and the drop-out pattern also influence the statistical power to detect intervention effects. This…
Descriptors: Intervention, Sample Size, Research Methodology, Longitudinal Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Schochet, Peter Z. – Journal of Educational and Behavioral Statistics, 2008
This article examines theoretical and empirical issues related to the statistical power of impact estimates for experimental evaluations of education programs. The author considers designs where random assignment is conducted at the school, classroom, or student level, and employs a unified analytic framework using statistical methods from the…
Descriptors: Elementary School Students, Research Design, Standardized Tests, Program Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
von Davier, Matthias; Sinharay, Sandip – Journal of Educational and Behavioral Statistics, 2007
Reporting methods used in large-scale assessments such as the National Assessment of Educational Progress (NAEP) rely on latent regression models. To fit the latent regression model using the maximum likelihood estimation technique, multivariate integrals must be evaluated. In the computer program MGROUP used by the Educational Testing Service for…
Descriptors: Simulation, Computer Software, Sampling, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Xiaofeng – Journal of Educational and Behavioral Statistics, 2003
This article considers optimal sample allocation between the treatment and control condition in multilevel designs when the costs per sampling unit vary due to treatment assignment. Optimal unequal allocation may reduce the cost from that of a balanced design without sacrificing any power. The optimum sample allocation ratio depends only on the…
Descriptors: Sampling, Computation, Costs, Sample Size