NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
van der Linden, Wim J.; Ren, Hao – Journal of Educational and Behavioral Statistics, 2020
The Bayesian way of accounting for the effects of error in the ability and item parameters in adaptive testing is through the joint posterior distribution of all parameters. An optimized Markov chain Monte Carlo algorithm for adaptive testing is presented, which samples this distribution in real time to score the examinee's ability and optimally…
Descriptors: Bayesian Statistics, Adaptive Testing, Error of Measurement, Markov Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Yamaguchi, Kazuhiro – Journal of Educational and Behavioral Statistics, 2023
Understanding whether or not different types of students master various attributes can aid future learning remediation. In this study, two-level diagnostic classification models (DCMs) were developed to represent the probabilistic relationship between external latent classes and attribute mastery patterns. Furthermore, variational Bayesian (VB)…
Descriptors: Bayesian Statistics, Classification, Statistical Inference, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Gu, Fei; Preacher, Kristopher J.; Ferrer, Emilio – Journal of Educational and Behavioral Statistics, 2014
Mediation is a causal process that evolves over time. Thus, a study of mediation requires data collected throughout the process. However, most applications of mediation analysis use cross-sectional rather than longitudinal data. Another implicit assumption commonly made in longitudinal designs for mediation analysis is that the same mediation…
Descriptors: Statistical Analysis, Models, Research Design, Case Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Culpepper, Steven Andrew – Journal of Educational and Behavioral Statistics, 2015
A Bayesian model formulation of the deterministic inputs, noisy "and" gate (DINA) model is presented. Gibbs sampling is employed to simulate from the joint posterior distribution of item guessing and slipping parameters, subject attribute parameters, and latent class probabilities. The procedure extends concepts in Béguin and Glas,…
Descriptors: Bayesian Statistics, Models, Sampling, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Jia, Yue; Stokes, Lynne; Harris, Ian; Wang, Yan – Journal of Educational and Behavioral Statistics, 2011
In this article, we consider estimation of parameters of random effects models from samples collected via complex multistage designs. Incorporation of sampling weights is one way to reduce estimation bias due to unequal probabilities of selection. Several weighting methods have been proposed in the literature for estimating the parameters of…
Descriptors: Sampling, Computation, Statistical Bias, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Browne, William; Goldstein, Harvey – Journal of Educational and Behavioral Statistics, 2010
In this article, we discuss the effect of removing the independence assumptions between the residuals in two-level random effect models. We first consider removing the independence between the Level 2 residuals and instead assume that the vector of all residuals at the cluster level follows a general multivariate normal distribution. We…
Descriptors: Computation, Sampling, Markov Processes, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Viechtbauer, Wolfgang – Journal of Educational and Behavioral Statistics, 2005
The meta-analytic random effects model assumes that the variability in effect size estimates drawn from a set of studies can be decomposed into two parts: heterogeneity due to random population effects and sampling variance. In this context, the usual goal is to estimate the central tendency and the amount of heterogeneity in the population effect…
Descriptors: Bias, Meta Analysis, Models, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Sik-Yum; Song, Xin-Yuan – Journal of Educational and Behavioral Statistics, 2005
In this article, a maximum likelihood (ML) approach for analyzing a rather general two-level structural equation model is developed for hierarchically structured data that are very common in educational and/or behavioral research. The proposed two-level model can accommodate nonlinear causal relations among latent variables as well as effects…
Descriptors: Mathematics, Sampling, Structural Equation Models, Bayesian Statistics