Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 13 |
Since 2006 (last 20 years) | 21 |
Descriptor
Source
Journal of Educational and… | 21 |
Author
Dong, Nianbo | 2 |
Kelcey, Benjamin | 2 |
Leckie, George | 2 |
Azen, Razia | 1 |
Browne, William | 1 |
Burrus, Jeremy | 1 |
Charlton, Chris | 1 |
Chung, Yeojin | 1 |
Cox, Kyle | 1 |
De Naeghel, Jessie | 1 |
Dorie, Vincent | 1 |
More ▼ |
Publication Type
Journal Articles | 21 |
Reports - Research | 17 |
Reports - Evaluative | 3 |
Reports - Descriptive | 1 |
Education Level
Audience
Location
California | 1 |
Germany | 1 |
United Kingdom (England) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 1 |
Program for International… | 1 |
What Works Clearinghouse Rating
Shen, Zuchao; Kelcey, Benjamin – Journal of Educational and Behavioral Statistics, 2020
Conventional optimal design frameworks consider a narrow range of sampling cost structures that thereby constrict their capacity to identify the most powerful and efficient designs. We relax several constraints of previous optimal design frameworks by allowing for variable sampling costs in cluster-randomized trials. The proposed framework…
Descriptors: Sampling, Research Design, Randomized Controlled Trials, Statistical Analysis
Li, Wei; Dong, Nianbo; Maynard, Rebecca A. – Journal of Educational and Behavioral Statistics, 2020
Cost-effectiveness analysis is a widely used educational evaluation tool. The randomized controlled trials that aim to evaluate the cost-effectiveness of the treatment are commonly referred to as randomized cost-effectiveness trials (RCETs). This study provides methods of power analysis for two-level multisite RCETs. Power computations take…
Descriptors: Statistical Analysis, Cost Effectiveness, Randomized Controlled Trials, Educational Research
Mistler, Stephen A.; Enders, Craig K. – Journal of Educational and Behavioral Statistics, 2017
Multiple imputation methods can generally be divided into two broad frameworks: joint model (JM) imputation and fully conditional specification (FCS) imputation. JM draws missing values simultaneously for all incomplete variables using a multivariate distribution, whereas FCS imputes variables one at a time from a series of univariate conditional…
Descriptors: Statistical Analysis, Comparative Analysis, Hierarchical Linear Modeling, Computer Simulation
Kim, Minjung; Hsu, Hsien-Yuan – Journal of Educational and Behavioral Statistics, 2019
Given the natural hierarchical structure in school-setting data, multilevel modeling (MLM) has been widely employed in education research using a number of different statistical software packages. The purpose of this article is to review a recent feature of Stat-JR, the statistical analysis assistants (SAAs) embedded in Stat-JR (Version 1.0.5),…
Descriptors: Hierarchical Linear Modeling, Statistical Analysis, Computer Software, Computer Software Evaluation
Qin, Xu; Hong, Guanglei – Journal of Educational and Behavioral Statistics, 2017
When a multisite randomized trial reveals between-site variation in program impact, methods are needed for further investigating heterogeneous mediation mechanisms across the sites. We conceptualize and identify a joint distribution of site-specific direct and indirect effects under the potential outcomes framework. A method-of-moments procedure…
Descriptors: Randomized Controlled Trials, Hierarchical Linear Modeling, Statistical Analysis, Probability
Grund, Simon; Lüdtke, Oliver; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2018
Multiple imputation (MI) can be used to address missing data at Level 2 in multilevel research. In this article, we compare joint modeling (JM) and the fully conditional specification (FCS) of MI as well as different strategies for including auxiliary variables at Level 1 using either their manifest or their latent cluster means. We show with…
Descriptors: Statistical Analysis, Data, Comparative Analysis, Hierarchical Linear Modeling
Rhoads, Christopher – Journal of Educational and Behavioral Statistics, 2017
Researchers designing multisite and cluster randomized trials of educational interventions will usually conduct a power analysis in the planning stage of the study. To conduct the power analysis, researchers often use estimates of intracluster correlation coefficients and effect sizes derived from an analysis of survey data. When there is…
Descriptors: Statistical Analysis, Hierarchical Linear Modeling, Surveys, Effect Size
Leckie, George – Journal of Educational and Behavioral Statistics, 2018
The traditional approach to estimating the consistency of school effects across subject areas and the stability of school effects across time is to fit separate value-added multilevel models to each subject or cohort and to correlate the resulting empirical Bayes predictions. We show that this gives biased correlations and these biases cannot be…
Descriptors: Value Added Models, Reliability, Statistical Bias, Computation
Talloen, Wouter; Moerkerke, Beatrijs; Loeys, Tom; De Naeghel, Jessie; Van Keer, Hilde; Vansteelandt, Stijn – Journal of Educational and Behavioral Statistics, 2016
To assess the direct and indirect effect of an intervention, multilevel 2-1-1 studies with intervention randomized at the upper (class) level and mediator and outcome measured at the lower (student) level are frequently used in educational research. In such studies, the mediation process may flow through the student-level mediator (the within…
Descriptors: Intervention, Hierarchical Linear Modeling, Computation, Randomized Controlled Trials
Sweet, Tracy M.; Junker, Brian W. – Journal of Educational and Behavioral Statistics, 2016
The hierarchical network model (HNM) is a framework introduced by Sweet, Thomas, and Junker for modeling interventions and other covariate effects on ensembles of social networks, such as what would be found in randomized controlled trials in education research. In this article, we develop calculations for the power to detect an intervention…
Descriptors: Intervention, Social Networks, Statistical Analysis, Computation
Kelcey, Benjamin; Dong, Nianbo; Spybrook, Jessaca; Cox, Kyle – Journal of Educational and Behavioral Statistics, 2017
Designs that facilitate inferences concerning both the total and indirect effects of a treatment potentially offer a more holistic description of interventions because they can complement "what works" questions with the comprehensive study of the causal connections implied by substantive theories. Mapping the sensitivity of designs to…
Descriptors: Statistical Analysis, Randomized Controlled Trials, Mediation Theory, Models
Drechsler, Jörg – Journal of Educational and Behavioral Statistics, 2015
Multiple imputation is widely accepted as the method of choice to address item-nonresponse in surveys. However, research on imputation strategies for the hierarchical structures that are typically found in the data in educational contexts is still limited. While a multilevel imputation model should be preferred from a theoretical point of view if…
Descriptors: Hierarchical Linear Modeling, Statistical Analysis, Educational Research, Statistical Bias
Koch, Tobias; Schultze, Martin; Burrus, Jeremy; Roberts, Richard D.; Eid, Michael – Journal of Educational and Behavioral Statistics, 2015
The numerous advantages of structural equation modeling (SEM) for the analysis of multitrait-multimethod (MTMM) data are well known. MTMM-SEMs allow researchers to explicitly model the measurement error, to examine the true convergent and discriminant validity of the given measures, and to relate external variables to the latent trait as well as…
Descriptors: Structural Equation Models, Hierarchical Linear Modeling, Factor Analysis, Multitrait Multimethod Techniques
Chung, Yeojin; Gelman, Andrew; Rabe-Hesketh, Sophia; Liu, Jingchen; Dorie, Vincent – Journal of Educational and Behavioral Statistics, 2015
When fitting hierarchical regression models, maximum likelihood (ML) estimation has computational (and, for some users, philosophical) advantages compared to full Bayesian inference, but when the number of groups is small, estimates of the covariance matrix (S) of group-level varying coefficients are often degenerate. One can do better, even from…
Descriptors: Regression (Statistics), Hierarchical Linear Modeling, Bayesian Statistics, Statistical Inference
VanHoudnos, Nathan M.; Greenhouse, Joel B. – Journal of Educational and Behavioral Statistics, 2016
When cluster randomized experiments are analyzed as if units were independent, test statistics for treatment effects can be anticonservative. Hedges proposed a correction for such tests by scaling them to control their Type I error rate. This article generalizes the Hedges correction from a posttest-only experimental design to more common designs…
Descriptors: Statistical Analysis, Randomized Controlled Trials, Error of Measurement, Scaling
Previous Page | Next Page »
Pages: 1 | 2