Publication Date
In 2025 | 1 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 13 |
Since 2006 (last 20 years) | 13 |
Descriptor
Source
Journal of Educational and… | 13 |
Author
Dong, Nianbo | 3 |
Kelcey, Benjamin | 3 |
Spybrook, Jessaca | 2 |
Avi Feller | 1 |
Benjamin Lu | 1 |
Cox, Kyle | 1 |
De Naeghel, Jessie | 1 |
Eli Ben-Michael | 1 |
Gagnon-Bartsch, Johann A. | 1 |
Greenhouse, Joel B. | 1 |
Hansen, Ben B. | 1 |
More ▼ |
Publication Type
Journal Articles | 13 |
Reports - Research | 9 |
Reports - Descriptive | 2 |
Reports - Evaluative | 2 |
Education Level
Adult Education | 1 |
High Schools | 1 |
Higher Education | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Postsecondary Education | 1 |
Secondary Education | 1 |
Audience
Location
Canada | 1 |
Puerto Rico | 1 |
Texas | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Peter Z. Schochet – Journal of Educational and Behavioral Statistics, 2025
Random encouragement designs evaluate treatments that aim to increase participation in a program or activity. These randomized controlled trials (RCTs) can also assess the mediated effects of participation itself on longer term outcomes using a complier average causal effect (CACE) estimation framework. This article considers power analysis…
Descriptors: Statistical Analysis, Computation, Causal Models, Research Design
Benjamin Lu; Eli Ben-Michael; Avi Feller; Luke Miratrix – Journal of Educational and Behavioral Statistics, 2023
In multisite trials, learning about treatment effect variation across sites is critical for understanding where and for whom a program works. Unadjusted comparisons, however, capture "compositional" differences in the distributions of unit-level features as well as "contextual" differences in site-level features, including…
Descriptors: Statistical Analysis, Statistical Distributions, Program Implementation, Comparative Analysis
Shen, Zuchao; Kelcey, Benjamin – Journal of Educational and Behavioral Statistics, 2020
Conventional optimal design frameworks consider a narrow range of sampling cost structures that thereby constrict their capacity to identify the most powerful and efficient designs. We relax several constraints of previous optimal design frameworks by allowing for variable sampling costs in cluster-randomized trials. The proposed framework…
Descriptors: Sampling, Research Design, Randomized Controlled Trials, Statistical Analysis
Wu, Edward; Gagnon-Bartsch, Johann A. – Journal of Educational and Behavioral Statistics, 2021
In paired experiments, participants are grouped into pairs with similar characteristics, and one observation from each pair is randomly assigned to treatment. The resulting treatment and control groups should be well-balanced; however, there may still be small chance imbalances. Building on work for completely randomized experiments, we propose a…
Descriptors: Experiments, Groups, Research Design, Statistical Analysis
Li, Wei; Dong, Nianbo; Maynard, Rebecca A. – Journal of Educational and Behavioral Statistics, 2020
Cost-effectiveness analysis is a widely used educational evaluation tool. The randomized controlled trials that aim to evaluate the cost-effectiveness of the treatment are commonly referred to as randomized cost-effectiveness trials (RCETs). This study provides methods of power analysis for two-level multisite RCETs. Power computations take…
Descriptors: Statistical Analysis, Cost Effectiveness, Randomized Controlled Trials, Educational Research
Schochet, Peter Z. – Journal of Educational and Behavioral Statistics, 2018
Design-based methods have recently been developed as a way to analyze randomized controlled trial (RCT) data for designs with a single treatment and control group. This article builds on this framework to develop design-based estimators for evaluations with multiple research groups. Results are provided for a wide range of designs used in…
Descriptors: Randomized Controlled Trials, Computation, Educational Research, Experimental Groups
Sales, Adam C.; Hansen, Ben B. – Journal of Educational and Behavioral Statistics, 2020
Conventionally, regression discontinuity analysis contrasts a univariate regression's limits as its independent variable, "R," approaches a cut point, "c," from either side. Alternative methods target the average treatment effect in a small region around "c," at the cost of an assumption that treatment assignment,…
Descriptors: Regression (Statistics), Computation, Statistical Inference, Robustness (Statistics)
Power for Detecting Treatment by Moderator Effects in Two- and Three-Level Cluster Randomized Trials
Spybrook, Jessaca; Kelcey, Benjamin; Dong, Nianbo – Journal of Educational and Behavioral Statistics, 2016
Recently, there has been an increase in the number of cluster randomized trials (CRTs) to evaluate the impact of educational programs and interventions. These studies are often powered for the main effect of treatment to address the "what works" question. However, program effects may vary by individual characteristics or by context,…
Descriptors: Randomized Controlled Trials, Statistical Analysis, Computation, Educational Research
Moerbeek, Mirjam; Safarkhani, Maryam – Journal of Educational and Behavioral Statistics, 2018
Data from cluster randomized trials do not always have a pure hierarchical structure. For instance, students are nested within schools that may be crossed by neighborhoods, and soldiers are nested within army units that may be crossed by mental health-care professionals. It is important that the random cross-classification is taken into account…
Descriptors: Randomized Controlled Trials, Classification, Research Methodology, Military Personnel
Qin, Xu; Hong, Guanglei – Journal of Educational and Behavioral Statistics, 2017
When a multisite randomized trial reveals between-site variation in program impact, methods are needed for further investigating heterogeneous mediation mechanisms across the sites. We conceptualize and identify a joint distribution of site-specific direct and indirect effects under the potential outcomes framework. A method-of-moments procedure…
Descriptors: Randomized Controlled Trials, Hierarchical Linear Modeling, Statistical Analysis, Probability
Talloen, Wouter; Moerkerke, Beatrijs; Loeys, Tom; De Naeghel, Jessie; Van Keer, Hilde; Vansteelandt, Stijn – Journal of Educational and Behavioral Statistics, 2016
To assess the direct and indirect effect of an intervention, multilevel 2-1-1 studies with intervention randomized at the upper (class) level and mediator and outcome measured at the lower (student) level are frequently used in educational research. In such studies, the mediation process may flow through the student-level mediator (the within…
Descriptors: Intervention, Hierarchical Linear Modeling, Computation, Randomized Controlled Trials
Kelcey, Benjamin; Dong, Nianbo; Spybrook, Jessaca; Cox, Kyle – Journal of Educational and Behavioral Statistics, 2017
Designs that facilitate inferences concerning both the total and indirect effects of a treatment potentially offer a more holistic description of interventions because they can complement "what works" questions with the comprehensive study of the causal connections implied by substantive theories. Mapping the sensitivity of designs to…
Descriptors: Statistical Analysis, Randomized Controlled Trials, Mediation Theory, Models
VanHoudnos, Nathan M.; Greenhouse, Joel B. – Journal of Educational and Behavioral Statistics, 2016
When cluster randomized experiments are analyzed as if units were independent, test statistics for treatment effects can be anticonservative. Hedges proposed a correction for such tests by scaling them to control their Type I error rate. This article generalizes the Hedges correction from a posttest-only experimental design to more common designs…
Descriptors: Statistical Analysis, Randomized Controlled Trials, Error of Measurement, Scaling