Publication Date
In 2025 | 1 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 5 |
Descriptor
Bayesian Statistics | 5 |
Hierarchical Linear Modeling | 5 |
Monte Carlo Methods | 3 |
Simulation | 3 |
Comparative Analysis | 2 |
Probability | 2 |
Case Studies | 1 |
Data Collection | 1 |
Educational Research | 1 |
Efficiency | 1 |
Evaluation Methods | 1 |
More ▼ |
Source
Journal of Experimental… | 5 |
Author
Baek, Eunkyeng | 1 |
Beretvas, S. Natasha | 1 |
Fay, Derek M. | 1 |
Ferron, John M. | 1 |
Kamata, Akihito | 1 |
Kara, Yusuf | 1 |
Konstantopoulos, Spyros | 1 |
Levy, Roy | 1 |
Schulte, Ann C. | 1 |
Shen, Ting | 1 |
Van den Noortgate, Wim | 1 |
More ▼ |
Publication Type
Journal Articles | 5 |
Reports - Research | 5 |
Education Level
Early Childhood Education | 1 |
Elementary Education | 1 |
Kindergarten | 1 |
Primary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 1 |
What Works Clearinghouse Rating
Yasuhiro Yamamoto; Yasuo Miyazaki – Journal of Experimental Education, 2025
Bayesian methods have been said to solve small sample problems in frequentist methods by reflecting prior knowledge in the prior distribution. However, there are dangers in strongly reflecting prior knowledge or situations where much prior knowledge cannot be used. In order to address the issue, in this article, we considered to apply two Bayesian…
Descriptors: Sample Size, Hierarchical Linear Modeling, Bayesian Statistics, Prior Learning
Kara, Yusuf; Kamata, Akihito – Journal of Experimental Education, 2022
Within-cluster variance homogeneity is one of the key assumptions of multilevel models; however, assuming a constant (i.e. equal) within-cluster variance may not be realistic. Moreover, existent within-cluster variance heterogeneity should be regarded as a source of additional information rather than a violation of a model assumption. This study…
Descriptors: Bayesian Statistics, Hierarchical Linear Modeling, Item Response Theory, Multivariate Analysis
Fay, Derek M.; Levy, Roy; Schulte, Ann C. – Journal of Experimental Education, 2022
Longitudinal data structures are frequently encountered in a variety of disciplines in the social and behavioral sciences. Growth curve modeling offers a highly extensible framework that allows for the exploration of rich hypotheses. However, owing to the presence of interrelated sources of potential data-model misfit at multiple levels, the…
Descriptors: Measurement, Models, Bayesian Statistics, Hierarchical Linear Modeling
Baek, Eunkyeng; Beretvas, S. Natasha; Van den Noortgate, Wim; Ferron, John M. – Journal of Experimental Education, 2020
Recently, researchers have used multilevel models for estimating intervention effects in single-case experiments that include replications across participants (e.g., multiple baseline designs) or for combining results across multiple single-case studies. Researchers estimating these multilevel models have primarily relied on restricted maximum…
Descriptors: Bayesian Statistics, Intervention, Case Studies, Monte Carlo Methods
Shen, Ting; Konstantopoulos, Spyros – Journal of Experimental Education, 2022
Large-scale education data are collected via complex sampling designs that incorporate clustering and unequal probability of selection. Multilevel models are often utilized to account for clustering effects. The probability weighted approach (PWA) has been frequently used to deal with the unequal probability of selection. In this study, we examine…
Descriptors: Data Collection, Educational Research, Hierarchical Linear Modeling, Bayesian Statistics