Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 5 |
Descriptor
Error Patterns | 5 |
Monte Carlo Methods | 5 |
Simulation | 4 |
Regression (Statistics) | 3 |
Computation | 2 |
Correlation | 2 |
Evaluation Methods | 2 |
Hierarchical Linear Modeling | 2 |
Models | 2 |
Predictor Variables | 2 |
Research Design | 2 |
More ▼ |
Source
Journal of Experimental… | 5 |
Author
Onghena, Patrick | 2 |
Bulte, Isis | 1 |
Heyvaert, Mieke | 1 |
Huang, Francis L. | 1 |
Manolov, Rumen | 1 |
Moeyaert, Mariola | 1 |
Murphy, Daniel L. | 1 |
Pituch, Keenan A. | 1 |
Schoeneberger, Jason A. | 1 |
Solanas, Antonio | 1 |
Ugille, Maaike | 1 |
More ▼ |
Publication Type
Journal Articles | 5 |
Reports - Research | 5 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Huang, Francis L. – Journal of Experimental Education, 2022
Experiments in psychology or education often use logistic regression models (LRMs) when analyzing binary outcomes. However, a challenge with LRMs is that results are generally difficult to understand. We present alternatives to LRMs in the analysis of experiments and discuss the linear probability model, the log-binomial model, and the modified…
Descriptors: Regression (Statistics), Monte Carlo Methods, Probability, Error Patterns
Heyvaert, Mieke; Moeyaert, Mariola; Verkempynck, Paul; Van den Noortgate, Wim; Vervloet, Marlies; Ugille, Maaike; Onghena, Patrick – Journal of Experimental Education, 2017
This article reports on a Monte Carlo simulation study, evaluating two approaches for testing the intervention effect in replicated randomized AB designs: two-level hierarchical linear modeling (HLM) and using the additive method to combine randomization test "p" values (RTcombiP). Four factors were manipulated: mean intervention effect,…
Descriptors: Monte Carlo Methods, Simulation, Intervention, Replication (Evaluation)
Schoeneberger, Jason A. – Journal of Experimental Education, 2016
The design of research studies utilizing binary multilevel models must necessarily incorporate knowledge of multiple factors, including estimation method, variance component size, or number of predictors, in addition to sample sizes. This Monte Carlo study examined the performance of random effect binary outcome multilevel models under varying…
Descriptors: Sample Size, Models, Computation, Predictor Variables
Manolov, Rumen; Solanas, Antonio; Bulte, Isis; Onghena, Patrick – Journal of Experimental Education, 2010
This study deals with the statistical properties of a randomization test applied to an ABAB design in cases where the desirable random assignment of the points of change in phase is not possible. To obtain information about each possible data division, the authors carried out a conditional Monte Carlo simulation with 100,000 samples for each…
Descriptors: Monte Carlo Methods, Effect Size, Simulation, Evaluation Methods
Murphy, Daniel L.; Pituch, Keenan A. – Journal of Experimental Education, 2009
The authors examined the robustness of multilevel linear growth curve modeling to misspecification of an autoregressive moving average process. As previous research has shown (J. Ferron, R. Dailey, & Q. Yi, 2002; O. Kwok, S. G. West, & S. B. Green, 2007; S. Sivo, X. Fan, & L. Witta, 2005), estimates of the fixed effects were unbiased, and Type I…
Descriptors: Sample Size, Computation, Evaluation Methods, Longitudinal Studies