NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 13 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Mariola Moeyaert; Panpan Yang; Yukang Xue – Journal of Experimental Education, 2024
We have entered an era in which scientific evidence increasingly informs research practice and policy. As there is an exponential increase in the use of single-case experimental designs (SCEDs) to evaluate intervention effectiveness, there is accumulating evidence available for quantitative synthesis. Consequently, there is a growing interest in…
Descriptors: Meta Analysis, Research Design, Synthesis, Patients
Peer reviewed Peer reviewed
Direct linkDirect link
Kyle Cox; Ben Kelcey; Hannah Luce – Journal of Experimental Education, 2024
Comprehensive evaluation of treatment effects is aided by considerations for moderated effects. In educational research, the combination of natural hierarchical structures and prevalence of group-administered or shared facilitator treatments often produces three-level partially nested data structures. Literature details planning strategies for a…
Descriptors: Randomized Controlled Trials, Monte Carlo Methods, Hierarchical Linear Modeling, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Bulus, Metin; Dong, Nianbo – Journal of Experimental Education, 2021
Sample size determination in multilevel randomized trials (MRTs) and multilevel regression discontinuity designs (MRDDs) can be complicated due to multilevel structure, monetary restrictions, differing marginal costs per treatment and control units, and range restrictions in sample size at one or more levels. These issues have sparked a set of…
Descriptors: Sampling, Research Methodology, Costs, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Kelcey, Ben; Shen, Zuchao – Journal of Experimental Education, 2020
When well-implemented, mediation analyses play a critical role in probing theories of action because their results help lay the ground work for the critical development of a treatment and the iterative advancement of theories that are foundational to a discipline. Despite strong interest in designs that incorporate mediation, few studies have…
Descriptors: Research Design, Sampling, Statistical Analysis, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Wei; Konstantopoulos, Spyros – Journal of Experimental Education, 2019
Education experiments frequently assign students to treatment or control conditions within schools. Longitudinal components added in these studies (e.g., students followed over time) allow researchers to assess treatment effects in average rates of change (e.g., linear or quadratic). We provide methods for a priori power analysis in three-level…
Descriptors: Research Design, Statistical Analysis, Sample Size, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Dong, Nianbo; Kelcey, Benjamin; Spybrook, Jessaca – Journal of Experimental Education, 2018
Researchers are often interested in whether the effects of an intervention differ conditional on individual- or group-moderator variables such as children's characteristics (e.g., gender), teacher's background (e.g., years of teaching), and school's characteristics (e.g., urbanity); that is, the researchers seek to examine for whom and under what…
Descriptors: Statistical Analysis, Randomized Controlled Trials, Intervention, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Rhoads, Christopher H.; Dye, Charles – Journal of Experimental Education, 2016
An important concern when planning research studies is to obtain maximum precision of an estimate of a treatment effect given a budget constraint. When research designs have a "multilevel" or "hierarchical" structure changes in sample size at different levels of the design will impact precision differently. Furthermore, there…
Descriptors: Research Design, Hierarchical Linear Modeling, Regression (Statistics), Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Heyvaert, Mieke; Moeyaert, Mariola; Verkempynck, Paul; Van den Noortgate, Wim; Vervloet, Marlies; Ugille, Maaike; Onghena, Patrick – Journal of Experimental Education, 2017
This article reports on a Monte Carlo simulation study, evaluating two approaches for testing the intervention effect in replicated randomized AB designs: two-level hierarchical linear modeling (HLM) and using the additive method to combine randomization test "p" values (RTcombiP). Four factors were manipulated: mean intervention effect,…
Descriptors: Monte Carlo Methods, Simulation, Intervention, Replication (Evaluation)
Peer reviewed Peer reviewed
Direct linkDirect link
Hembry, Ian; Bunuan, Rommel; Beretvas, S. Natasha; Ferron, John M.; Van den Noortgate, Wim – Journal of Experimental Education, 2015
A multilevel logistic model for estimating a nonlinear trajectory in a multiple-baseline design is introduced. The model is applied to data from a real multiple-baseline design study to demonstrate interpretation of relevant parameters. A simple change-in-levels (?"Levels") model and a model involving a quadratic function…
Descriptors: Computation, Research Design, Data, Intervention
Peer reviewed Peer reviewed
Direct linkDirect link
Wu, Jiun-Yu; Kwok, Oi-Man; Willson, Victor L. – Journal of Experimental Education, 2014
The authors compared the effects of using the true Multilevel Latent Growth Curve Model (MLGCM) with single-level regular and design-based Latent Growth Curve Models (LGCM) with or without the higher-level predictor on various criterion variables for multilevel longitudinal data. They found that random effect estimates were biased when the…
Descriptors: Longitudinal Studies, Hierarchical Linear Modeling, Prediction, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Stapleton, Laura M.; Pituch, Keenan A.; Dion, Eric – Journal of Experimental Education, 2015
This article presents 3 standardized effect size measures to use when sharing results of an analysis of mediation of treatment effects for cluster-randomized trials. The authors discuss 3 examples of mediation analysis (upper-level mediation, cross-level mediation, and cross-level mediation with a contextual effect) with demonstration of the…
Descriptors: Effect Size, Measurement Techniques, Statistical Analysis, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Moeyaert, Mariola; Ugille, Maaike; Ferron, John M.; Beretvas, S. Natasha; Van den Noortgate, Wim – Journal of Experimental Education, 2014
One approach for combining single-case data involves use of multilevel modeling. In this article, the authors use a Monte Carlo simulation study to inform applied researchers under which realistic conditions the three-level model is appropriate. The authors vary the value of the immediate treatment effect and the treatment's effect on the time…
Descriptors: Hierarchical Linear Modeling, Monte Carlo Methods, Case Studies, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Lai, Mark H. C.; Kwok, Oi-man – Journal of Experimental Education, 2015
Educational researchers commonly use the rule of thumb of "design effect smaller than 2" as the justification of not accounting for the multilevel or clustered structure in their data. The rule, however, has not yet been systematically studied in previous research. In the present study, we generated data from three different models…
Descriptors: Educational Research, Research Design, Cluster Grouping, Statistical Data