NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Huibin Zhang; Zuchao Shen; Walter L. Leite – Journal of Experimental Education, 2025
Cluster-randomized trials have been widely used to evaluate the treatment effects of interventions on student outcomes. When interventions are implemented by teachers, researchers need to account for the nested structure in schools (i.e., students are nested within teachers nested within schools). Schools usually have a very limited number of…
Descriptors: Sample Size, Multivariate Analysis, Randomized Controlled Trials, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Kara, Yusuf; Kamata, Akihito – Journal of Experimental Education, 2022
Within-cluster variance homogeneity is one of the key assumptions of multilevel models; however, assuming a constant (i.e. equal) within-cluster variance may not be realistic. Moreover, existent within-cluster variance heterogeneity should be regarded as a source of additional information rather than a violation of a model assumption. This study…
Descriptors: Bayesian Statistics, Hierarchical Linear Modeling, Item Response Theory, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Kyle T. Turner; George Engelhard Jr. – Journal of Experimental Education, 2024
The purpose of this study is to demonstrate clustering methods within a functional data analysis (FDA) framework for identifying subgroups of individuals that may be exhibiting categories of misfit. Person response functions (PRFs) estimated within a FDA framework (FDA-PRFs) provide graphical displays that can aid in the identification of persons…
Descriptors: Data Analysis, Multivariate Analysis, Individual Characteristics, Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Yan; Kim, Eunsook; Joo, Seang-Hwane; Chun, Seokjoon; Alamri, Abeer; Lee, Philseok; Stark, Stephen – Journal of Experimental Education, 2022
Multilevel latent class analysis (MLCA) has been increasingly used to investigate unobserved population heterogeneity while taking into account data dependency. Nonparametric MLCA has gained much popularity due to the advantage of classifying both individuals and clusters into latent classes. This study demonstrated the need to relax the…
Descriptors: Nonparametric Statistics, Hierarchical Linear Modeling, Monte Carlo Methods, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
McNeish, Daniel – Journal of Experimental Education, 2018
Small samples are common in growth models due to financial and logistical difficulties of following people longitudinally. For similar reasons, longitudinal studies often contain missing data. Though full information maximum likelihood (FIML) is popular to accommodate missing data, the limited number of studies in this area have found that FIML…
Descriptors: Growth Models, Sampling, Sample Size, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Fang, Hua; Brooks, Gordon P.; Rizzo, Maria L.; Espy, Kimberly Andrews; Barcikowski, Robert S. – Journal of Experimental Education, 2009
Because the power properties of traditional repeated measures and hierarchical multivariate linear models have not been clearly determined in the balanced design for longitudinal studies in the literature, the authors present a power comparison study of traditional repeated measures and hierarchical multivariate linear models under 3…
Descriptors: Longitudinal Studies, Models, Measurement, Multivariate Analysis
Peer reviewed Peer reviewed
Williamson, Gary L. – Journal of Experimental Education, 1990
A growth curve approach to longitudinal profile analysis is presented by which univariate and multivariate descriptions of achievement and rate of growth are provided, and intraindividual strengths and weaknesses are computed for profiles of achievement and progress. Analyses are reported for simulated data conforming to a straight-line growth…
Descriptors: Academic Achievement, Achievement Gains, Data Analysis, Individual Characteristics