Publication Date
In 2025 | 1 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 4 |
Descriptor
Randomized Controlled Trials | 4 |
Simulation | 4 |
Hierarchical Linear Modeling | 3 |
Research Design | 3 |
Educational Research | 2 |
Monte Carlo Methods | 2 |
Sample Size | 2 |
Statistical Bias | 2 |
Accuracy | 1 |
Correlation | 1 |
Data Analysis | 1 |
More ▼ |
Source
Journal of Experimental… | 4 |
Author
Ben Kelcey | 1 |
Chen, Qi | 1 |
Glaman, Ryan | 1 |
Hannah Luce | 1 |
Henson, Robin K. | 1 |
Heyvaert, Mieke | 1 |
Huibin Zhang | 1 |
Kyle Cox | 1 |
Moeyaert, Mariola | 1 |
Onghena, Patrick | 1 |
Ugille, Maaike | 1 |
More ▼ |
Publication Type
Journal Articles | 4 |
Reports - Research | 3 |
Reports - Descriptive | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Huibin Zhang; Zuchao Shen; Walter L. Leite – Journal of Experimental Education, 2025
Cluster-randomized trials have been widely used to evaluate the treatment effects of interventions on student outcomes. When interventions are implemented by teachers, researchers need to account for the nested structure in schools (i.e., students are nested within teachers nested within schools). Schools usually have a very limited number of…
Descriptors: Sample Size, Multivariate Analysis, Randomized Controlled Trials, Correlation
Glaman, Ryan; Chen, Qi; Henson, Robin K. – Journal of Experimental Education, 2022
This study compared three approaches for handling a fourth level of nesting when analyzing cluster-randomized trial (CRT) data. Although CRT data analyses may include repeated measures, individual, and cluster levels, there may be an additional fourth level that is typically ignored. This study examined the impact of ignoring this fourth level,…
Descriptors: Randomized Controlled Trials, Hierarchical Linear Modeling, Data Analysis, Simulation
Kyle Cox; Ben Kelcey; Hannah Luce – Journal of Experimental Education, 2024
Comprehensive evaluation of treatment effects is aided by considerations for moderated effects. In educational research, the combination of natural hierarchical structures and prevalence of group-administered or shared facilitator treatments often produces three-level partially nested data structures. Literature details planning strategies for a…
Descriptors: Randomized Controlled Trials, Monte Carlo Methods, Hierarchical Linear Modeling, Educational Research
Heyvaert, Mieke; Moeyaert, Mariola; Verkempynck, Paul; Van den Noortgate, Wim; Vervloet, Marlies; Ugille, Maaike; Onghena, Patrick – Journal of Experimental Education, 2017
This article reports on a Monte Carlo simulation study, evaluating two approaches for testing the intervention effect in replicated randomized AB designs: two-level hierarchical linear modeling (HLM) and using the additive method to combine randomization test "p" values (RTcombiP). Four factors were manipulated: mean intervention effect,…
Descriptors: Monte Carlo Methods, Simulation, Intervention, Replication (Evaluation)