NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
John Mart V. DelosReyes; Miguel A. Padilla – Journal of Experimental Education, 2024
Estimating confidence intervals (CIs) for the correlation has been a challenge because the correlation sampling distribution changes depending on the correlation magnitude. The Fisher z-transformation was one of the first attempts at estimating correlation CIs but has historically shown to not have acceptable coverage probability if data were…
Descriptors: Research Problems, Correlation, Intervals, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Waterbury, Glenn Thomas; DeMars, Christine E. – Journal of Experimental Education, 2019
There is a need for effect sizes that are readily interpretable by a broad audience. One index that might fill this need is [pi], which represents the proportion of scores in one group that exceed the mean of another group. The robustness of estimates of [pi] to violations of normality had not been explored. Using simulated data, three estimates…
Descriptors: Effect Size, Robustness (Statistics), Simulation, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Beretvas, S. Natasha; Murphy, Daniel L. – Journal of Experimental Education, 2013
The authors assessed correct model identification rates of Akaike's information criterion (AIC), corrected criterion (AICC), consistent AIC (CAIC), Hannon and Quinn's information criterion (HQIC), and Bayesian information criterion (BIC) for selecting among cross-classified random effects models. Performance of default values for the 5…
Descriptors: Models, Goodness of Fit, Evaluation Criteria, Educational Research
Peer reviewed Peer reviewed
MacDonald, Paul – Journal of Experimental Education, 1999
Assessed the relative merits of the Student "t" test and the Wilcoxon rank sum test under four population distributions and six sample-size pairings through Monte Carlo methods. The Wilcoxon rank sum test demonstrated an advantage in statistical power for nonnormal distributions (but not normal distributions), with fewer Type III errors…
Descriptors: Monte Carlo Methods, Nonparametric Statistics, Power (Statistics), Simulation
Peer reviewed Peer reviewed
Penfield, Douglas A. – Journal of Experimental Education, 1994
Type I error rate and power for the t test, Wilcoxon-Mann-Whitney test, van der Waerden Normal Scores, and Welch-Aspin-Satterthwaite (W) test are compared for two simulated independent random samples from nonnormal distributions. Conditions under which the t test and W test are best to use are discussed. (SLD)
Descriptors: Monte Carlo Methods, Nonparametric Statistics, Power (Statistics), Sample Size