Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 7 |
Descriptor
Error of Measurement | 10 |
Structural Equation Models | 10 |
Goodness of Fit | 6 |
Monte Carlo Methods | 4 |
Correlation | 3 |
Factor Analysis | 3 |
Sample Size | 3 |
Computation | 2 |
Hierarchical Linear Modeling | 2 |
Sampling | 2 |
Statistical Bias | 2 |
More ▼ |
Source
Journal of Experimental… | 10 |
Author
Sivo, Stephen A. | 2 |
Fan, Xitao | 1 |
Hancock, Gregory R. | 1 |
Hong, Hyeri | 1 |
Hoyle, Rick H. | 1 |
Jia, Yuane | 1 |
Konold, Timothy | 1 |
Konold, Timothy R. | 1 |
Lee, Hyeryung | 1 |
Li, Jian | 1 |
Lomax, Richard G. | 1 |
More ▼ |
Publication Type
Journal Articles | 10 |
Reports - Research | 8 |
Reports - Evaluative | 2 |
Education Level
Elementary Education | 1 |
Grade 5 | 1 |
Grade 6 | 1 |
Intermediate Grades | 1 |
Audience
Researchers | 1 |
Location
California | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Big Five Inventory | 1 |
What Works Clearinghouse Rating
Vispoel, Walter P.; Lee, Hyeryung; Xu, Guanlan; Hong, Hyeri – Journal of Experimental Education, 2023
Although generalizability theory (GT) designs have traditionally been analyzed within an ANOVA framework, identical results can be obtained with structural equation models (SEMs) but extended to represent multiple sources of both systematic and measurement error variance, include estimation methods less likely to produce negative variance…
Descriptors: Generalizability Theory, Structural Equation Models, Programming Languages, Scores
Jia, Yuane; Konold, Timothy – Journal of Experimental Education, 2021
Traditional observed variable multilevel models for evaluating indirect effects are limited by their inability to quantify measurement and sampling error. They are further restricted by being unable to fully separate within- and between-level effects without bias. Doubly latent models reduce these biases by decomposing the observed within-level…
Descriptors: Hierarchical Linear Modeling, Educational Environment, Aggression, Bullying
Li, Jian; Lomax, Richard G. – Journal of Experimental Education, 2017
Using Monte Carlo simulations, this research examined the performance of four missing data methods in SEM under different multivariate distributional conditions. The effects of four independent variables (sample size, missing proportion, distribution shape, and factor loading magnitude) were investigated on six outcome variables: convergence rate,…
Descriptors: Monte Carlo Methods, Structural Equation Models, Evaluation Methods, Measurement Techniques
Morin, Alexandre J. S.; Marsh, Herbert W.; Nagengast, Benjamin; Scalas, L. Francesca – Journal of Experimental Education, 2014
Many classroom climate studies suffer from 2 critical problems: They (a) treat climate as a student-level (L1) variable in single-level analyses instead of a classroom-level (L2) construct in multilevel analyses; and (b) rely on manifest-variable models rather than on latent-variable models that control measurement error at L1 and L2, and sampling…
Descriptors: Classroom Environment, Hierarchical Linear Modeling, Structural Equation Models, Grade 5
Sun, Shaojing; Konold, Timothy R.; Fan, Xitao – Journal of Experimental Education, 2011
Interest in testing interaction terms within the latent variable modeling framework has been on the rise in recent years. However, little is known about the influence of nonnormality and model misspecification on such models that involve latent variable interactions. The authors used Mattson's data generation method to control for latent variable…
Descriptors: Structural Equation Models, Interaction, Sample Size, Computation
Sivo, Stephen A.; Xitao, Fan; Witta, E. Lea; Willse, John T. – Journal of Experimental Education, 2006
This study is a partial replication of L. Hu and P. M. Bentler's (1999) fit criteria work. The purpose of this study was twofold: (a) to determine whether cut-off values vary according to which model is the true population model for a dataset and (b) to identify which of 13 fit indexes behave optimally by retaining all of the correct models while…
Descriptors: Structural Equation Models, Goodness of Fit, Criteria, Sample Size
Wang, Zhongmiao; Thompson, Bruce – Journal of Experimental Education, 2007
In this study the authors investigated the use of 5 (i.e., Claudy, Ezekiel, Olkin-Pratt, Pratt, and Smith) R[squared] correction formulas with the Pearson r[squared]. The authors estimated adjustment bias and precision under 6 x 3 x 6 conditions (i.e., population [rho] values of 0.0, 0.1, 0.3, 0.5, 0.7, and 0.9; population shapes normal, skewness…
Descriptors: Effect Size, Correlation, Mathematical Formulas, Monte Carlo Methods

Sivo, Stephen A.; Willson, Victor L. – Journal of Experimental Education, 1998
Critiques H. W. Marsh and K.-T. Hau's (1996) assertion that parsimony is not always desirable when assessing model-fit on a particular counterexample drawn from Marsh's previous research. This counterexample is neither general nor valid enough to support such a thesis and it signals an oversight of extant, stochastic models justifying correlated…
Descriptors: Correlation, Error of Measurement, Goodness of Fit, Statistical Studies

Hoyle, Rick H. – Journal of Experimental Education, 1998
In response to H. W. Marsh and K.-T. Hau's (1996) article on the potential for inferential errors when parsimony is rewarded in the evaluation of overall fit of structural equation models, a design-sensitive adjustment to the standard parsimony ratio is proposed. This ratio renders a more reasonable upper bound than does the standard parsimony…
Descriptors: Correlation, Error of Measurement, Goodness of Fit, Statistical Studies

Nevitt, Jonathan; Hancock, Gregory R. – Journal of Experimental Education, 2000
Studied incorporating adjusted model fit information into the root mean square error of approximation fit index (RMSEA). Monte Carlo simulation results show that incorporating robust information into the RMSEA may yield improved performance for assessing model fit under nonnormal data situations. (SLD)
Descriptors: Error of Measurement, Goodness of Fit, Monte Carlo Methods, Structural Equation Models