NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Journal of Experimental…44
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 44 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yasuhiro Yamamoto; Yasuo Miyazaki – Journal of Experimental Education, 2025
Bayesian methods have been said to solve small sample problems in frequentist methods by reflecting prior knowledge in the prior distribution. However, there are dangers in strongly reflecting prior knowledge or situations where much prior knowledge cannot be used. In order to address the issue, in this article, we considered to apply two Bayesian…
Descriptors: Sample Size, Hierarchical Linear Modeling, Bayesian Statistics, Prior Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Mariola Moeyaert; Panpan Yang; Yukang Xue – Journal of Experimental Education, 2024
We have entered an era in which scientific evidence increasingly informs research practice and policy. As there is an exponential increase in the use of single-case experimental designs (SCEDs) to evaluate intervention effectiveness, there is accumulating evidence available for quantitative synthesis. Consequently, there is a growing interest in…
Descriptors: Meta Analysis, Research Design, Synthesis, Patients
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, W. Holmes – Journal of Experimental Education, 2022
Multivariate analysis of variance (MANOVA) is widely used to test the null hypothesis of equal multivariate means across 2 or more groups. MANOVA rests upon an assumption that error terms are independent of one another, which can be violated if individuals are clustered or nested within groups, such as schools. Ignoring such nesting can result in…
Descriptors: Multivariate Analysis, Hypothesis Testing, Structural Equation Models, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Glaman, Ryan; Chen, Qi; Henson, Robin K. – Journal of Experimental Education, 2022
This study compared three approaches for handling a fourth level of nesting when analyzing cluster-randomized trial (CRT) data. Although CRT data analyses may include repeated measures, individual, and cluster levels, there may be an additional fourth level that is typically ignored. This study examined the impact of ignoring this fourth level,…
Descriptors: Randomized Controlled Trials, Hierarchical Linear Modeling, Data Analysis, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Kyle Cox; Ben Kelcey; Hannah Luce – Journal of Experimental Education, 2024
Comprehensive evaluation of treatment effects is aided by considerations for moderated effects. In educational research, the combination of natural hierarchical structures and prevalence of group-administered or shared facilitator treatments often produces three-level partially nested data structures. Literature details planning strategies for a…
Descriptors: Randomized Controlled Trials, Monte Carlo Methods, Hierarchical Linear Modeling, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Aydin, Burak; Algina, James – Journal of Experimental Education, 2022
Decomposing variables into between and within components are often required in multilevel analysis. This method of decomposition should not ignore possible unreliability of an observed group mean (i.e., arithmetic mean) that is due to small cluster sizes and can lead to substantially biased estimates. Adjustment procedures that allow unbiased…
Descriptors: Hierarchical Linear Modeling, Prediction, Research Methodology, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Kara, Yusuf; Kamata, Akihito – Journal of Experimental Education, 2022
Within-cluster variance homogeneity is one of the key assumptions of multilevel models; however, assuming a constant (i.e. equal) within-cluster variance may not be realistic. Moreover, existent within-cluster variance heterogeneity should be regarded as a source of additional information rather than a violation of a model assumption. This study…
Descriptors: Bayesian Statistics, Hierarchical Linear Modeling, Item Response Theory, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Fay, Derek M.; Levy, Roy; Schulte, Ann C. – Journal of Experimental Education, 2022
Longitudinal data structures are frequently encountered in a variety of disciplines in the social and behavioral sciences. Growth curve modeling offers a highly extensible framework that allows for the exploration of rich hypotheses. However, owing to the presence of interrelated sources of potential data-model misfit at multiple levels, the…
Descriptors: Measurement, Models, Bayesian Statistics, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Bulus, Metin; Dong, Nianbo – Journal of Experimental Education, 2021
Sample size determination in multilevel randomized trials (MRTs) and multilevel regression discontinuity designs (MRDDs) can be complicated due to multilevel structure, monetary restrictions, differing marginal costs per treatment and control units, and range restrictions in sample size at one or more levels. These issues have sparked a set of…
Descriptors: Sampling, Research Methodology, Costs, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Kelcey, Ben; Shen, Zuchao – Journal of Experimental Education, 2020
When well-implemented, mediation analyses play a critical role in probing theories of action because their results help lay the ground work for the critical development of a treatment and the iterative advancement of theories that are foundational to a discipline. Despite strong interest in designs that incorporate mediation, few studies have…
Descriptors: Research Design, Sampling, Statistical Analysis, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Yan; Kim, Eunsook; Joo, Seang-Hwane; Chun, Seokjoon; Alamri, Abeer; Lee, Philseok; Stark, Stephen – Journal of Experimental Education, 2022
Multilevel latent class analysis (MLCA) has been increasingly used to investigate unobserved population heterogeneity while taking into account data dependency. Nonparametric MLCA has gained much popularity due to the advantage of classifying both individuals and clusters into latent classes. This study demonstrated the need to relax the…
Descriptors: Nonparametric Statistics, Hierarchical Linear Modeling, Monte Carlo Methods, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
DeMars, Christine E. – Journal of Experimental Education, 2020
Multilevel Rasch models are increasingly used to estimate the relationships between test scores and student and school factors. Response data were generated to follow one-, two-, and three-parameter logistic (1PL, 2PL, 3PL) models, but the Rasch model was used to estimate the latent regression parameters. When the response functions followed 2PL…
Descriptors: Hierarchical Linear Modeling, Regression (Statistics), Simulation, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Baek, Eunkyeng; Beretvas, S. Natasha; Van den Noortgate, Wim; Ferron, John M. – Journal of Experimental Education, 2020
Recently, researchers have used multilevel models for estimating intervention effects in single-case experiments that include replications across participants (e.g., multiple baseline designs) or for combining results across multiple single-case studies. Researchers estimating these multilevel models have primarily relied on restricted maximum…
Descriptors: Bayesian Statistics, Intervention, Case Studies, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Shen, Ting; Konstantopoulos, Spyros – Journal of Experimental Education, 2022
Large-scale education data are collected via complex sampling designs that incorporate clustering and unequal probability of selection. Multilevel models are often utilized to account for clustering effects. The probability weighted approach (PWA) has been frequently used to deal with the unequal probability of selection. In this study, we examine…
Descriptors: Data Collection, Educational Research, Hierarchical Linear Modeling, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Kooken, Janice; McCoach, D. Betsy; Chafouleas, Sandra M. – Journal of Experimental Education, 2019
Current practices for growth mixture modeling emphasize the importance of the proper parameterization and number of classes, but the impact of these decisions on latent class composition and the substantive implications has not been thoroughly addressed. Using measures of behavior from 575 middle school students, we compared the results of several…
Descriptors: Statistical Analysis, Middle School Students, Hierarchical Linear Modeling, Student Behavior
Previous Page | Next Page ยป
Pages: 1  |  2  |  3