NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Denis Zhidkikh; Ville Heilala; Charlotte Van Petegem; Peter Dawyndt; Miitta Jarvinen; Sami Viitanen; Bram De Wever; Bart Mesuere; Vesa Lappalainen; Lauri Kettunen; Raija Hämäläinen – Journal of Learning Analytics, 2024
Predictive learning analytics has been widely explored in educational research to improve student retention and academic success in an introductory programming course in computer science (CS1). General-purpose and interpretable dropout predictions still pose a challenge. Our study aims to reproduce and extend the data analysis of a privacy-first…
Descriptors: Learning Analytics, Prediction, School Holding Power, Academic Achievement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Harrison, Scott; Villano, Renato; Lynch, Grace; Chen, George – Journal of Learning Analytics, 2021
Early alert systems (EAS) are an important technological tool to help manage and improve student retention. Data spanning 16,091 students over 156 weeks was collected from a regionally based university in Australia to explore various microeconometric approaches that establish links between EAS and student retention outcomes. Controlling for…
Descriptors: Learning Analytics, School Holding Power, Integrated Learning Systems, Microeconomics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Herodotou, Christothea; Naydenova, Galina; Boroowa, Avi; Gilmour, Alison; Rienties, Bart – Journal of Learning Analytics, 2020
Despite the potential of Predictive Learning Analytics (PLAs) to identify students at risk of failing their studies, research demonstrating effective application of PLAs to higher education is relatively limited. The aims of this study are: (1) to identify whether and how PLAs can inform the design of motivational interventions; and (2) to capture…
Descriptors: Learning Analytics, Predictive Measurement, Student Motivation, Intervention