Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 6 |
Descriptor
Data Analysis | 6 |
Dropouts | 6 |
Academic Achievement | 3 |
College Students | 3 |
Data Collection | 3 |
Educational Research | 3 |
Foreign Countries | 3 |
Online Courses | 3 |
Computer Science Education | 2 |
Correlation | 2 |
Educational Technology | 2 |
More ▼ |
Source
Journal of Learning Analytics | 6 |
Author
Publication Type
Journal Articles | 6 |
Reports - Research | 6 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 5 |
Postsecondary Education | 5 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
De Silva, Liyanachchi Mahesha Harshani; Chounta, Irene-Angelica; Rodríguez-Triana, María Jesús; Roa, Eric Roldan; Gramberg, Anna; Valk, Aune – Journal of Learning Analytics, 2022
Although the number of students in higher education institutions (HEIs) has increased over the past two decades, it is far from assured that all students will gain an academic degree. To that end, institutional analytics (IA) can offer insights to support strategic planning with the aim of reducing dropout and therefore of minimizing its negative…
Descriptors: College Students, Dropouts, Dropout Prevention, Data Analysis
Atapattu, Thushari; Falkner, Katrina – Journal of Learning Analytics, 2018
Lecture videos are amongst the most widely used instructional methods within present Massive Open Online Courses (MOOCs) and other digital educational platforms. As the main form of instruction, student engagement behaviour, including interaction with videos, directly impacts the student success or failure and accordingly, in-video dropouts…
Descriptors: Lecture Method, Video Technology, Online Courses, Mass Instruction
Ferguson, Rebecca; Clow, Doug – Journal of Learning Analytics, 2015
Massive open online courses (MOOCs) are being used across the world to provide millions of learners with access to education. Many who begin these courses complete them successfully, or to their own satisfaction, but the high numbers who do not finish remain a subject of concern. In 2013, a team from Stanford University analyzed engagement…
Descriptors: Online Courses, Access to Education, Learner Engagement, Constructivism (Learning)
Ye, Cheng; Biswas, Gautam – Journal of Learning Analytics, 2014
Our project is motivated by the early dropout and low completion rate problem in MOOCs. We have extended traditional features for MOOC analysis with richer and higher granularity information to make more accurate predictions of dropout and performance. The results show that finer-grained temporal information increases the predictive power in the…
Descriptors: Large Group Instruction, Online Courses, Educational Technology, Technology Uses in Education
Aguiar, Everaldo; Ambrose, G. Alex; Chawla, Nitesh V.; Goodrich, Victoria; Brockman, Jay – Journal of Learning Analytics, 2014
As providers of higher education begin to harness the power of big data analytics, one very fitting application for these new techniques is that of predicting student attrition. The ability to pinpoint students who might soon decide to drop out, or who may be following a suboptimal path to success, allows those in charge not only to understand the…
Descriptors: Academic Persistence, Engineering Education, Portfolios (Background Materials), Dropouts
Méndez, Gonzalo; Ochoa, Xavier; Chiluiza, Katherine; de Wever, Bram – Journal of Learning Analytics, 2014
Learning analytics has been as used a tool to improve the learning process mainly at the micro-level (courses and activities). However, another of the key promises of learning analytics research is to create tools that could help educational institutions at the meso- and macro-level to gain better insight into the inner workings of their programs…
Descriptors: Data Analysis, Data Collection, Educational Research, Curriculum Design