NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Alif Silpachai; Reza Neiriz; MacKenzie Novotny; Ricardo Gutierrez-Osuna; John M. Levis; Evgeny Chukharev – Language Learning & Technology, 2024
It is unclear whether corrective feedback (CF) provided by L2 computer-assisted pronunciation training (CAPT) tools must be 100% accurate to promote an acceptable level of improvement in pronunciation. Using a web-based interface, 30 native speakers of Chinese completed a pretest, a computer-based training session to produce nine sound contrasts…
Descriptors: College Students, Foreign Students, English (Second Language), Second Language Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Ranalli, Jim; Yamashita, Taichi – Language Learning & Technology, 2022
To the extent automated written corrective feedback (AWCF) tools such as Grammarly are based on sophisticated error-correction technologies, such as machine-learning techniques, they have the potential to find and correct more common L2 error types than simpler spelling and grammar checkers such as the one included in Microsoft Word (technically…
Descriptors: Error Correction, Feedback (Response), Computer Software, Second Language Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Bronson Hui; Björn Rudzewitz; Detmar Meurers – Language Learning & Technology, 2023
Interactive digital tools increasingly used for language learning can provide detailed system logs (e.g., number of attempts, responses submitted), and thereby a window into the user's learning processes. To date, SLA researchers have made little use of such data to understand the relationships between learning conditions, processes, and outcomes.…
Descriptors: Computer Assisted Instruction, Second Language Learning, Second Language Instruction, Learning Processes