NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Shin, Jinnie; Gierl, Mark J. – Language Testing, 2021
Automated essay scoring (AES) has emerged as a secondary or as a sole marker for many high-stakes educational assessments, in native and non-native testing, owing to remarkable advances in feature engineering using natural language processing, machine learning, and deep-neural algorithms. The purpose of this study is to compare the effectiveness…
Descriptors: Scoring, Essays, Writing Evaluation, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Enright, Mary K.; Quinlan, Thomas – Language Testing, 2010
E-rater[R] is an automated essay scoring system that uses natural language processing techniques to extract features from essays and to model statistically human holistic ratings. Educational Testing Service has investigated the use of e-rater, in conjunction with human ratings, to score one of the two writing tasks on the TOEFL-iBT[R] writing…
Descriptors: Second Language Learning, Scoring, Essays, Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Chodorow, Martin; Gamon, Michael; Tetreault, Joel – Language Testing, 2010
In this paper, we describe and evaluate two state-of-the-art systems for identifying and correcting writing errors involving English articles and prepositions. Criterion[superscript SM], developed by Educational Testing Service, and "ESL Assistant", developed by Microsoft Research, both use machine learning techniques to build models of article…
Descriptors: Grammar, Feedback (Response), Form Classes (Languages), Second Language Learning